搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型抗弯曲大模场面积光子晶体光纤

娄淑琴 鹿文亮 王鑫

引用本文:
Citation:

新型抗弯曲大模场面积光子晶体光纤

娄淑琴, 鹿文亮, 王鑫

A novel bend-resistant large-mode-area photonic crystal fiber

Lou Shu-Qin, Lu Wen-Liang, Wang Xin
PDF
导出引用
  • 研制出一种新型抗弯曲大模场面积石英光子晶体光纤. 利用光子晶体光纤结构设计的灵活性, 通过规划缺陷的位置及空气孔的尺寸, 实现了大模场面积单模及低弯曲损耗特性.应用建立的实际光子晶体光纤特性分析模型, 研究了研制光纤的模式特性和弯曲特性, 在波长1064 nm处, 平直状态下光纤的模场面积可以达到2812 μm2, 基模限制损耗为0.00024 dB/m, 高阶模限制损耗高于1.248 dB/m. 基模和高阶模之间的高传输损耗差, 保证了在获得大模场面积的同时实现单模传输. 弯曲半径和弯曲方向角所带来弯曲损耗变化的研究结果显示, 即使在弯曲半径小到5 cm时, 弯曲损耗也在10-3 dB/m量级以下, 而且在弯曲半径为30 cm时光纤可承受的弯曲方向角范围扩展至-60°–60°. 研制的光纤具有良好的低弯曲损耗特性, 可有效解决非对称结构所带来的光纤弯曲特性对弯曲方向角敏感的问题. 该光纤在高功率光纤激光器、放大器及高功率传输等技术领域具有重要的应用价值.
    A novel bend-resistant large-mode-area silica photonic crystal fiber (PCF) is proposed and fabricated. With the advantage of flexible design on the PCF configuration, the properties of large-mode-area, single mode propagation and low bend loss can be simultaneously achieved by intentionally designing the position of defect and the size of air holes. Modal properties and bending loss of the actual PCF can be evaluated with previous model for assessing the properties of the actual fiber. Numerical results demonstrate that this fiber has an extremely large mode area of 2812 μm2, low confine loss of 0.00024 dB/m of the fundamental mode and high confine loss of over 1.248 dB/m of higher order mode at a wavelength of 1064 nm when the optical fibre is kept straight. The large difference in propagation loss levels between fundamental mode and higher order modes ensures the efficient single-mode propagation in the fiber core. Furthermore, the effects of bend radius and bend direction angle on bend loss are investigated when the fiber is bent. Even if bend radius is as small as 5 cm, bend loss of this fiber is still below 10-3 dB/m. It is found that the proposed fiber has the negligible bending loss at a bending radius of 30 cm with the bending angle ranging from -60° to 60°. These results illustrate that the fabricated fiber possesses the better bend resistant properties and can overcome the sensitivity to bend direction angle caused by the asymmetric structure. The fabricated fiber will play an important role in developing high power fiber laser, fiber amplifier and high power delivery application.
    • 基金项目: 国家自然科学基金(批准号:60977033,61177082)和北京市自然科学基金(批准号:4122063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60977033, 61177082) and the Beijing Natural Science Foundation, China (Grant No. 4122063).
    [1]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [2]

    Tnnermann A, Schreiber T, Röser F, Liem A, Höfer S, Zellmer H, Nolte S, Limpert J 2005 J. Phys. B 38 S681

    [3]

    Li M J, Chen X, Liu A, Wang G S, Walton D T, Zenteno L A 2009 J. Lightw. Technol. 27 3010

    [4]

    Knight J C, Birks T A, Cregan R F, Russell P S, de Sandre J P 1998 Electron. Lett. 34 1347

    [5]

    Limpert J, Schmidt O, Rothhardt J, Röser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [6]

    Schmidt O, Rothhardt J, Eidam T, Röser F, Limpert J, Tnner-mann A, Hansen K P, Jakobsen C, Broeng J 2008 Opt. Express 16 3918

    [7]

    Vogel M M, Abdou-Ahmed M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [8]

    Dong L, Wu T W, McKay H A, Fu L, Li J, Winful H 2009 IEEE J. Sel. Topics Quantum Electron. 15 47

    [9]

    Wu T W, Dong L, Winful H 2008 Opt. Express 16 4278

    [10]

    Ward B G 2008 Opt. Express 16 8532

    [11]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [12]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 59 4041]

    [13]

    Napierala M, Nasilwski T, Bere\’s-Pawlik E, Berghmans F, Wójcik J, Thienpont H 2010 Opt. Express 18 15408.

    [14]

    Napierala M, Nasilwski T, Bere\’s-Pawlik E, Mergo P, Berghmans F, Thienpont H 2011 Opt. Express 19 22628

    [15]

    Chen M Y, Zhang Y K 2011 J. Lightwave Technol. 29 2216

    [16]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 4209

    [17]

    Olszewski J, Szpulak M, Martynkien T, Urban W, Berghmans F, Nasilowski T, Thienpont H 2007 Opt. Commun. 269 261

    [18]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770

    [19]

    Guo S, Wu F, Albin S 2004 Opt. Express 12 3341

    [20]

    Boag A, Boag A, Mittra R 1994 Microw. Opt. Technol. Lett. 7 395

    [21]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [22]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J. 2001 Opt. Lett. 26 1660

  • [1]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [2]

    Tnnermann A, Schreiber T, Röser F, Liem A, Höfer S, Zellmer H, Nolte S, Limpert J 2005 J. Phys. B 38 S681

    [3]

    Li M J, Chen X, Liu A, Wang G S, Walton D T, Zenteno L A 2009 J. Lightw. Technol. 27 3010

    [4]

    Knight J C, Birks T A, Cregan R F, Russell P S, de Sandre J P 1998 Electron. Lett. 34 1347

    [5]

    Limpert J, Schmidt O, Rothhardt J, Röser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [6]

    Schmidt O, Rothhardt J, Eidam T, Röser F, Limpert J, Tnner-mann A, Hansen K P, Jakobsen C, Broeng J 2008 Opt. Express 16 3918

    [7]

    Vogel M M, Abdou-Ahmed M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [8]

    Dong L, Wu T W, McKay H A, Fu L, Li J, Winful H 2009 IEEE J. Sel. Topics Quantum Electron. 15 47

    [9]

    Wu T W, Dong L, Winful H 2008 Opt. Express 16 4278

    [10]

    Ward B G 2008 Opt. Express 16 8532

    [11]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [12]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 59 4041]

    [13]

    Napierala M, Nasilwski T, Bere\’s-Pawlik E, Berghmans F, Wójcik J, Thienpont H 2010 Opt. Express 18 15408.

    [14]

    Napierala M, Nasilwski T, Bere\’s-Pawlik E, Mergo P, Berghmans F, Thienpont H 2011 Opt. Express 19 22628

    [15]

    Chen M Y, Zhang Y K 2011 J. Lightwave Technol. 29 2216

    [16]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 4209

    [17]

    Olszewski J, Szpulak M, Martynkien T, Urban W, Berghmans F, Nasilowski T, Thienpont H 2007 Opt. Commun. 269 261

    [18]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770

    [19]

    Guo S, Wu F, Albin S 2004 Opt. Express 12 3341

    [20]

    Boag A, Boag A, Mittra R 1994 Microw. Opt. Technol. Lett. 7 395

    [21]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [22]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J. 2001 Opt. Lett. 26 1660

  • [1] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析.  , 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [2] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析.  , 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [3] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究.  , 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [4] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究.  , 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [5] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计.  , 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [6] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析.  , 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [7] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析.  , 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [8] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究.  , 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [9] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析.  , 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [10] 盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫. 一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤.  , 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [11] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤.  , 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [12] 陈瑰, 蒋作文, 彭景刚, 李海清, 戴能利, 李进延. 空气包层大模场面积掺镱光子晶体光纤研究.  , 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [13] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [14] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究.  , 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [15] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析.  , 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [16] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计.  , 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [17] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器.  , 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [18] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器.  , 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [19] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究.  , 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [20] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器.  , 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
计量
  • 文章访问数:  7115
  • PDF下载量:  1364
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-16
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map