搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室内直达与非直达环境无线传播综合信道建模

周杰 刘鹏 黄雷 朱兴宇 邵根富

引用本文:
Citation:

室内直达与非直达环境无线传播综合信道建模

周杰, 刘鹏, 黄雷, 朱兴宇, 邵根富

Indoor wireless propagation under line of sight and no line of sight comprehensive channel modeling

null,
PDF
导出引用
  • 本文主要针对室内无线传播信道直达(line of sight, LOS)与非直达(no line of sight, NLOS)环境, 引入参考模型研究其建模设计及其相关统计特性. 文中提出了一种基于几何散射模型的综合改进室内参考信道模型, 假设将无限数量的散射体均匀分布在三维空间的一个二维(two dimensional, 2D)水平面上. 本文推导了电磁波达信号到达角(angle of arrival, AOA) 概率分布函数(probability density function, PDF)、多普勒功率谱密度(power spectral Density, PSD)、 时间自相关函数(autocorrelation function, ACF)的解析表达式, 并分析其重要参数对函数的影响. 此外, 本文还通过非现实参考模型提出了一种高效的SOC(Sum of Cisoids) 信道仿真模型, 同时提出了设计SOC信道仿真模型的两种有效参数计算方法, 并比较两者的计算性能. 仿真结果表明, 信道仿真模型的统计特性与参考模型相匹配, 即室内参考模型可以通过的SOC信道仿真模型来近似, 同时信道仿真模型可以很好的应用于评估室内无线通信系统的性能, 拓宽了室内无线信道建模的研究, 同时减少实现开支.
    This paper mainly deals with the indoor wireless propagation channel under line of sight (LOS) and non-line of sight (NLOS) propagation conditions, introducing the reference model and studing the design and simulation of modeling and the relevant statistical properties. This paper will present a comprehensive and improved indoor reference channel model based on a geometric scattering model. The reference channel model assumes that infinite number of scatterers will be uniformly distributed on the two-dimensional (2D) horizontal plane of a three-dimensional space. This paper also derives analytical expressions for the probability density function (PDF) of the angle-of-arrival (AOA), the Doppler power spectral density (PSD), and the temporal autocorrelation function (ACF) of an electromagnetic arrival signal; it also analyzes the influences of the important parameters of the functions. It presents a highly efficient sum-of-cisoids (SOC) channel simulation model from the unrealistic reference model, also proposes two efficient parameter computation methods for the design of sum-of-cisoids indoor channel simulation model and compares the computing performances of both. It is shown by simulation results that the statistical properties of the sum-of-cisoids channel simulation model match perfectly the reference channel model. It turns out that the indoor reference model can be approximated by an SOC channel simulation model. Meanwhile the channel simulation model can be well applied to evaluate the performance of indoor wireless communication systems. It also extends the research for indoor wireless channel modeling while reduces the realization expenditure.
      Corresponding author: , liupeng901217@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372128), the Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institute, China (Grant No. 14KJA510001), the China Postdoctoral Foundation (Grant No. 010986678) and the Scientific and Technological Support Project (Industry) of Jiangsu Province, China (Grant No. BE2011195).
    [1]

    Guerin S 1996 Vehicular Technology Conference Atlanta, USA, April 28- May 1, 1996 p160-164

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. B 15 2481

    [3]

    Zhou J, Jiang H, Hisakazu Kikuchi, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Zand E D, Pahlavan K, Beneat J 2003 Personal, Indoor and Mobile Radio Communications Beijing, China, September 7-10, 2003 p2213-2217

    [5]

    Durgin G D, Kukshya V, Rappaport T S 2003 IEEE Trans. on Antennas Propag. 51 936

    [6]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 48702 (in Chinese) [江浩, 周杰 2014 63 48702]

    [7]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 p87-90

    [8]

    Pätzold M, Hogstad B O 2004 Wireless Communications and Mobile Computing, Special Issue on Multiple-Input Multiple-Output (MIMO) Communications 4 727

    [9]

    Byers G J, Takawira F 2004 IEEE Trans. on Veh. Technol. 53 634

    [10]

    Ma Y, Pätzold M 2007 International Symposium on Wireless Personal Multimedia Communications Jaipur, India, December, 2007 p380-384

    [11]

    Ertel R B, Reed J H 1999 IEEE J. Select. Areas Commun. 17 1829

    [12]

    Petrus P 2002 IEEE Transactions on Communications 50 495

    [13]

    Baltzis K B, Sahalos J N 2009 Wireless Personal Communications 51 329

    [14]

    Alsehaili M, Noghanian S R, Sebak A 2010 Progress in Electromagnetics Research 109 191

    [15]

    Jiang L, Tan S Y 2007 IEEE Trans. on Veh. Technol. 56 3587

    [16]

    Zhou J, Cao Z, Kikuchi H 2014 IET Communications 8 1

    [17]

    Qu S 2009 IEEE Trans. on Veh. Technol. 58 1634

    [18]

    Gutierrez C A, Pätzold M 2007 IEEE Global Telecommunications Conference Washington, USA, November, 2007 p3842-3846

    [19]

    Gutierrez C A, Pätzold M 2009 Workshop on Mobile Computing and Networking Technologies Petersburg, Russia, 2009 p1-5

    [20]

    Pätzold M 2003 Mobile fading channels (USA: John Wiley & Sons, Inc.) p105

    [21]

    Gutierrez C A, Pätzold M 2010 IEEE Transactions on Wireless Communications 9 1308

    [22]

    Papoulis A, Pillai S U 2002 Probability, random variables, and stochastic processes (USA: Tata McGraw-Hill Education) p89

    [23]

    Pätzold M, Talha B 2007 International Symposium on Wireless Personal Multimedia Communications Jaipur, India, December, 2007 p394-400

    [24]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

  • [1]

    Guerin S 1996 Vehicular Technology Conference Atlanta, USA, April 28- May 1, 1996 p160-164

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. B 15 2481

    [3]

    Zhou J, Jiang H, Hisakazu Kikuchi, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Zand E D, Pahlavan K, Beneat J 2003 Personal, Indoor and Mobile Radio Communications Beijing, China, September 7-10, 2003 p2213-2217

    [5]

    Durgin G D, Kukshya V, Rappaport T S 2003 IEEE Trans. on Antennas Propag. 51 936

    [6]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 48702 (in Chinese) [江浩, 周杰 2014 63 48702]

    [7]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 p87-90

    [8]

    Pätzold M, Hogstad B O 2004 Wireless Communications and Mobile Computing, Special Issue on Multiple-Input Multiple-Output (MIMO) Communications 4 727

    [9]

    Byers G J, Takawira F 2004 IEEE Trans. on Veh. Technol. 53 634

    [10]

    Ma Y, Pätzold M 2007 International Symposium on Wireless Personal Multimedia Communications Jaipur, India, December, 2007 p380-384

    [11]

    Ertel R B, Reed J H 1999 IEEE J. Select. Areas Commun. 17 1829

    [12]

    Petrus P 2002 IEEE Transactions on Communications 50 495

    [13]

    Baltzis K B, Sahalos J N 2009 Wireless Personal Communications 51 329

    [14]

    Alsehaili M, Noghanian S R, Sebak A 2010 Progress in Electromagnetics Research 109 191

    [15]

    Jiang L, Tan S Y 2007 IEEE Trans. on Veh. Technol. 56 3587

    [16]

    Zhou J, Cao Z, Kikuchi H 2014 IET Communications 8 1

    [17]

    Qu S 2009 IEEE Trans. on Veh. Technol. 58 1634

    [18]

    Gutierrez C A, Pätzold M 2007 IEEE Global Telecommunications Conference Washington, USA, November, 2007 p3842-3846

    [19]

    Gutierrez C A, Pätzold M 2009 Workshop on Mobile Computing and Networking Technologies Petersburg, Russia, 2009 p1-5

    [20]

    Pätzold M 2003 Mobile fading channels (USA: John Wiley & Sons, Inc.) p105

    [21]

    Gutierrez C A, Pätzold M 2010 IEEE Transactions on Wireless Communications 9 1308

    [22]

    Papoulis A, Pillai S U 2002 Probability, random variables, and stochastic processes (USA: Tata McGraw-Hill Education) p89

    [23]

    Pätzold M, Talha B 2007 International Symposium on Wireless Personal Multimedia Communications Jaipur, India, December, 2007 p394-400

    [24]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

  • [1] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [2] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2020, (): . doi: 10.7498/aps.69.20200825
    [3] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计.  , 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [4] 张金鹏, 张玉石, 李清亮, 吴家骥. 基于不同散射机制特征的海杂波时变多普勒谱模型.  , 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [5] 林蔺, 焦利光, 陈博, 康庄庄, 马玉刚, 汪宏年. 用数值模式匹配算法高效仿真轴对称型散射体海洋可控源电磁响应.  , 2017, 66(13): 139102. doi: 10.7498/aps.66.139102
    [6] 迟静, 李小雷, 高大治, 王好忠, 王宁. 利用海浪噪声自相关实现散射体无源探测.  , 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [7] 代正亮, 崔维嘉, 巴斌, 张彦奎. 对称旋转不变相干分布式非圆信号二维波达方向估计.  , 2017, 66(22): 220701. doi: 10.7498/aps.66.220701
    [8] 周杰, 姚颖莉, 邵根富, 沈晓燕, 刘鹏. 基于车载通信标准街道场景的电磁散射信道模型.  , 2016, 65(14): 140501. doi: 10.7498/aps.65.140501
    [9] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化.  , 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [10] 李威, 李骏, 龚志雄. 水下任意刚性散射体对Bessel波的散射特性分析.  , 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [11] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究.  , 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [12] 周杰, 王亚林, 菊池久和. 三维空间域多普勒功率谱及其多天线系统性能.  , 2014, 63(24): 240507. doi: 10.7498/aps.63.240507
    [13] 杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森. 一种含圆柱形谐振散射体的黏弹材料低频吸声机理研究.  , 2013, 62(15): 154301. doi: 10.7498/aps.62.154301
    [14] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究.  , 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [15] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究.  , 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [16] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响.  , 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [17] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.  , 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [18] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究.  , 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [19] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析.  , 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [20] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究.  , 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
计量
  • 文章访问数:  7387
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-28
  • 修回日期:  2015-05-30
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map