搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功率谱的神经元放电早期预警信号

李松蔚 谢勇

引用本文:
Citation:

基于功率谱的神经元放电早期预警信号

李松蔚, 谢勇

Early warning signal with power spectrum in neuronal firing

Li Song-Wei, Xie Yong
PDF
导出引用
  • 在神经系统中,脑疾病的发生往往对应着神经系统的临界转迁与神经元的异常放电,因此对临界转迁的早期预警信号(EWS)的研究有助于预测神经元的放电行为,从而预防脑疾病的发生.传统EWS,如自相关系数、方差等指标,虽然能对动力系统的分岔点进行早期预警,但其无法对分岔类型进行区分.而基于功率谱的EWS可以有效预测分岔点并且区分分岔类型,且在气候及生态模型上的预测效果良好.本文将基于功率谱的EWS应用在神经元系统中,先后考察了Morris-Lecar和Hindmarsh-Rose模型神经元放电所对应的四种余维一分岔点前的临界现象,分别计算了传统EWS和基于功率谱的EWS,并进行了对比分析.结果表明基于功率谱的EWS能有效地预测神经元放电,并且能够对不同神经元的I型兴奋和II型兴奋作出区分.本研究对神经系统的临界转迁的预测有着重要的指导意义,对神经系统疾病的诊断和治疗有着重要的启示作用.
    Brain diseases often coincide with critical transitions in neural system and abnormal neuronal firing. Studying early warning signals (EWS) of critical transitions can offer a promising avenue for predicting neuronal firing behaviors, which can potentially aid in the early diagnosis and prevention of brain diseases. Conventional EWS, such as autocorrelation and variance, have been widely used to detect the critical transitions in various dynamical systems. However, these methods are limited in distinguishing different types of bifurcations. In contrast, EWS with power spectrum have shown a significant advantage in not only predicting bifurcation points but also distinguishing the types of bifurcations involved. Previous studies have demonstrated its predictive power in climate and ecological models. Based on this, this study applies the EWS with power spectrum to neuronal systems in order to predict the neuronal firing behaviors and distinguish different classes of neuronal excitability. Specifically, we compute the EWS before the occurrence of saddle-node bifurcation on the invariant circle and subcritical Hopf bifurcation in the Morris-Lecar neuron model. Additionally, we extend the analysis to the Hindmarsh-Rose model, calculating EWS before both saddle-node bifurcation and supercritical Hopf bifurcation. The study contains the four types of codimension-1 bifurcations corresponding to the neuronal firing. For comparison, we also calculate two types of conventional EWS: lag-1 autocorrelation and variance. In numerical simulations, the stochastic differential equations are simulated by the Euler-Maruyama method. Then, the simulated responses are detrended by the Lowess filter. Finally, the EWS are calculated using the rolling window method to ensure the detection of EWS before bifurcation points. Our results show that the EWS with power spectrum can effectively predict the bifurcation points, which mean that it can predict neuronal firing activities. Comparing with the lag-1 autocorrelation and the variance, the EWS with power spectrum not only accurately predict the neuronal firing, but also distinguish the classes of excitability in neurons. That is, according to the different characteristics of the power spectrum frequencies, the EWS with power spectrum can effectively distinguish saddle-node bifurcations and Hopf bifurcations during neuronal firing. This work presents a novel approach for predicting the critical transitions in neural system, with potential applications in diagnosing and treating brain diseases.
  • [1]

    Grziwotz F, Chang C W, Dakos V, van Nes E H, Schwarzländer M, Kamps O, Heßler M, Tokuda I T, Telschow A, Hsieh C H 2023 Sci. Adv. 9 eabq4558

    [2]

    Strogatz S H 2018 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Boca Raton: CRC press) pp70-80

    [3]

    Maturana M I, Meisel C, Dell K, Karoly P J, D’Souza W, Grayden D B, Burkitt A N, Jiruska P, Kudlacek J, Hlinka J, Cook M J, Kuhlmann L, Freestone D R 2020 Nat. Commun. 11 2172

    [4]

    Dakos V, Carpenter S R, Brock W A, Ellison A M, Guttal V, Ives A R, Kéfi S, Livina V, Seekell D A, van Nes E H 2012 PLoS One 7 e41010

    [5]

    Carpenter S R, Brock W A 2006 Ecol. Lett. 9 311

    [6]

    Held H, Kleinen T 2004 Geophys. Res. Lett. 31 L23207

    [7]

    Boettiger C, Hastings A 2012 J. R. Soc. Interface. 9 2527

    [8]

    Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter S R, Dakos V, Held H, van Nes E H, Rietkerk M, Sugihara G 2009 Nature 461 53

    [9]

    Lade S J, Gross T 2012 PLoS Comput. Biol. 8 e1002360

    [10]

    Carpenter S R, Brock W A 2011 Ecology 92 2196

    [11]

    Bauch C T, Sigdel R, Pharaon J, Anand M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14560

    [12]

    Yan P C, Hou W, Hu J G 2012 Acta Phys. Sin. 61 543 (in Chinese) [颜鹏程, 侯威, 胡经国, 2012 61 543]

    [13]

    Wu H, Hou W, Yan P C 2013 Acta Phys. Sin. 62 548 (in Chinese) [吴浩, 侯威, 颜鹏程 2013 62 548]

    [14]

    Wu H, Hou W, Yan P C, Feng G L 2013 Acta Phys. Sin. 61 561 (in Chinese) [吴浩, 侯威, 颜鹏程, 封国林 2012 61 561]

    [15]

    Boers N 2018 Nat. Commun. 9 2556

    [16]

    Meisel C, Klaus A, Kuehn C, Plenz D 2015 PLoS Comput. Biol 11 e1004097

    [17]

    Dakos V, Van Nes E H, D’Odorico P, Scheffer M 2012 Ecology 93 264

    [18]

    Kuznetsov Y A 2023 Elements of Applied Bifurcation Theory (Cham: Springer International Publishing) pp77-102

    [19]

    Bury T M, Bauch C T, Anand M 2020 J. R. Soc. Interface. 17 20200482

    [20]

    Chen Z, Fan P Y, Hou X T, Feng G L, Qian Z H 2024 Chaos Solitons Fractals 187 115409

    [21]

    Gardiner C W 1985 Handbook of stochastic methods for physics, chemistry and the natural sciences (Berlin: Springer) pp:106-107

    [22]

    Box G E, Jenkins G M, Reinsel G C, Ljung G M 2015 Time series analysis: forecasting and control (Hoboken: John Wiley & Sons) pp21-47

    [23]

    Welch P 1967 IEEE Trans. Audio Electroacoustics 15 70

    [24]

    Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol 4 e1000198

    [25]

    Liu C M, Liu X L, Liu S Q 2014 Biol. Cybern. 108 75

    [26]

    Kendall M G 1938 Biometrika 30 81

    [27]

    Lv M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变.  , doi: 10.7498/aps.72.20231037
    [2] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性.  , doi: 10.7498/aps.70.20200973
    [3] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究.  , doi: 10.7498/aps.70.20201777
    [4] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , doi: 10.7498/aps.67.20181260
    [5] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究.  , doi: 10.7498/aps.67.20180531
    [6] 李翔, 刘锋, 帅建伟. 癌细胞信号网络动力学研究.  , doi: 10.7498/aps.65.178704
    [7] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究.  , doi: 10.7498/aps.64.030503
    [8] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究.  , doi: 10.7498/aps.63.178701
    [9] 刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱. 颠倒睡眠状态调制心率变异性信号的功率谱和基本尺度熵分析.  , doi: 10.7498/aps.63.198703
    [10] 颜鹏程, 侯威, 胡经国. 基于Logistic模型的均值突变时间序列临界预警研究.  , doi: 10.7498/aps.61.189202
    [11] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟.  , doi: 10.7498/aps.61.089401
    [12] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究.  , doi: 10.7498/aps.61.124201
    [13] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征.  , doi: 10.7498/aps.61.208701
    [14] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振.  , doi: 10.7498/aps.60.044207
    [15] 黄俊, 孙顺凯, 肖德龙, 丁宁, 宁成, 张扬, 薛创. 丝阵Z箍缩早期消融等离子体动力学的二维数值模拟研究.  , doi: 10.7498/aps.59.6351
    [16] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱.  , doi: 10.7498/aps.58.5104
    [17] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , doi: 10.7498/aps.55.4767
    [18] 宋艳丽. 简谐速度噪声及其与势场之间的频率共振.  , doi: 10.7498/aps.55.6482
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析.  , doi: 10.7498/aps.54.5602
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度.  , doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  29
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-25

/

返回文章
返回
Baidu
map