-
在相干分布式非圆信号二维波达方向估计中,利用信号非圆特性可提升估计精度,但现有的低复杂度算法利用泰勒级数近似建立的旋转不变关系会引入额外误差.针对该问题,考虑中心对称的三维立体线阵,提出了一种基于对称旋转不变关系的二维波达方向估计算法.算法首先利用信号非圆特性建立了扩展阵列模型;然后证明了对于任意的中心对称阵列,相干分布源的确定性角信号分布函数矢量具有对称特性,利用此特性在三维立体线阵的三个子阵中分别建立了扩展广义方向矢量的对称旋转不变关系;基于此,通过无须搜索的多项式求根方式分别得到中心方位角和俯仰角估计;最后利用整个阵列广义方向矢量的对称旋转不变关系构造代价函数实现了参数匹配.理论分析和仿真实验表明,相比于现有的低复杂度算法,所提算法避免了泰勒级数近似引入的额外误差,以较小的复杂度代价获得了性能的较大提升.同时,所提算法能够实现三维空间全方位的角度估计.In practical applications such as mobile communication, radar and sonar, the effect of angular spread on the source energy can no longer be ignored due to multipath phenomena. Therefore, a spatially distributed source model is more realistic than the point source mode in these complex cases. A lot of direction-of-arrival (DOA) estimation methods for distributed sources have been published. Whereas researches concentrated on the complex circular signal case, the noncircular property of signal can be employed to further improve the estimation performance, which has received extensive attention recently. To date, several low-complexity DOA estimation algorithms for two-dimensional (2D) coherently distributed (CD) noncircular sources have been proposed. However, all these algorithms need obtain the approximate shift invariance relationship between the sub-arrays by applying the one-order Taylor series approximation to the generalized steering vectors, which may introduce additional errors and affect the estimation accuracy. In this paper, a novel 2D DOA estimation algorithm based on the symmetric shift invariance relationship is proposed using the centro-symmetric three-dimensional (3D) linear arrays. Firstly, the extended array model is established by exploiting the noncircularity of the signal. Then, it is proved that the deterministic angular distribution function vector of the CD source has a symmetrical property for arbitrary centro-symmetric array, based on which the symmetric shift invariance relationships of extended generalized steering vectors are established in the three sub-arrays of 3D linear arrays. On the premise of such relationships, the center azimuth and elevation DOAs are obtained by the polynomial rooting method without spectral peak searching. Finally, the cost function implementing the parameter matching is constructed by the symmetric shift invariance relationship of the generalized steering vector of the whole array. Theoretical analysis and simulation experiment show that compared with the existing low-complexity algorithms, the proposed algorithm avoids the additional errors introduced by the Taylor series approximation, which allows it to achieve higher estimation accuracy with the small complexity cost. Moreover, the proposed algorithm can achieve omnidirectional angle estimation in the three-dimensional space.
-
Keywords:
- coherently distributed source /
- noncircular source /
- 3D linear arrays /
- symmetric shift invariance
[1] Krim H, Viberg M 1996 IEEE Signal Process. Mag. 13 67
[2] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[3] Ba B, Liu G C, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]
[4] Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144
[5] Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都:电子科技大学)]
[6] Jiang H, Zhou J, Hisakazu K, Shao G 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]
[7] Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1
[8] Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169
[9] Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280
[10] Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592
[11] Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534
[12] Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]
[13] Boujemaa H 2005 European Trans. Telecommun. 16 557
[14] L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30
[15] Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789
[16] Guo X S, Wan Q, Yang W L, Lei X M 2009 Sci. China:Infor. Sci. 52 835
[17] Zheng Z, Li G, Teng Y 2012 Wireless Pers. Commun.62 907
[18] Yin J X, Wu Y, Wang D (in Chinese) [尹洁昕, 吴瑛, 王鼎 2014 通信学报 2 153]
[19] Yang X, Li G, Zheng Z, Zhong L 2014 Wireless Pers. Commun. 78 1095
[20] Yang X, Li G J, Zheng Z 2013 International Conference on Wireless Communication Signal Processing Hangzhou, China, October 24-26, 2013 p1
[21] Eckhoff R 1998 IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Boston, Massachusetts, September 8-11, 1998 p471
[22] Yang Z Q, Li S M (in Chinese) [杨正权, 李思敏 2001 通信学报 22 8]
[23] Shi Y, Huang L, Qian C, So H C 2015 IEEE Trans. Aerosp. Electron. Syst. 51 1267
[24] Yan F, Shen Y, Jin M, Qiao X 2016 J. Syst. Eng. Electron. 27 739
-
[1] Krim H, Viberg M 1996 IEEE Signal Process. Mag. 13 67
[2] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[3] Ba B, Liu G C, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]
[4] Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144
[5] Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都:电子科技大学)]
[6] Jiang H, Zhou J, Hisakazu K, Shao G 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]
[7] Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1
[8] Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169
[9] Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280
[10] Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592
[11] Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534
[12] Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]
[13] Boujemaa H 2005 European Trans. Telecommun. 16 557
[14] L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30
[15] Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789
[16] Guo X S, Wan Q, Yang W L, Lei X M 2009 Sci. China:Infor. Sci. 52 835
[17] Zheng Z, Li G, Teng Y 2012 Wireless Pers. Commun.62 907
[18] Yin J X, Wu Y, Wang D (in Chinese) [尹洁昕, 吴瑛, 王鼎 2014 通信学报 2 153]
[19] Yang X, Li G, Zheng Z, Zhong L 2014 Wireless Pers. Commun. 78 1095
[20] Yang X, Li G J, Zheng Z 2013 International Conference on Wireless Communication Signal Processing Hangzhou, China, October 24-26, 2013 p1
[21] Eckhoff R 1998 IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Boston, Massachusetts, September 8-11, 1998 p471
[22] Yang Z Q, Li S M (in Chinese) [杨正权, 李思敏 2001 通信学报 22 8]
[23] Shi Y, Huang L, Qian C, So H C 2015 IEEE Trans. Aerosp. Electron. Syst. 51 1267
[24] Yan F, Shen Y, Jin M, Qiao X 2016 J. Syst. Eng. Electron. 27 739
计量
- 文章访问数: 5807
- PDF下载量: 140
- 被引次数: 0