搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化

刘建华 唐军 商成龙 张伟 毕钰 翟陈婷 郭泽彬 王明焕 郭浩 钱坤 刘俊 薛晨阳

引用本文:
Citation:

面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化

刘建华, 唐军, 商成龙, 张伟, 毕钰, 翟陈婷, 郭泽彬, 王明焕, 郭浩, 钱坤, 刘俊, 薛晨阳

Optimization of microsphere’s DQ product based on resonant micro-optical gyro

Liu Jian-Hua, Tang Jun, Shang Cheng-Long, Zhang Wei, Bi Yu, Zhai Chen-Ting, Guo Ze-Bin, Wang Ming-Huan, Guo Hao, Qian Kun, Liu Jun, Xue Chen-Yang
PDF
导出引用
  • 基于谐振式光学陀螺高灵敏度、低成本与微型化的发展需求, 为了实现高灵敏度的谐振式微光机电陀螺, 提出了以集成光学微谐振腔领域里高Q值、大直径谐振腔的制作为目标, 应用方向为谐振式光学陀螺的球形光学微谐振腔核心敏感单元. 在实验中以氢火焰作为热源采用熔融法制备球形光学微谐振腔. 通过调节氢气的流量控制氢火焰热源面积, 制备了不同直径(300-2200 μm)的球形谐振腔, 分析了球形谐振腔Q 值、DQ乘积、陀螺灵敏度与谐振腔直径D的对应关系及其原因, 获得了最优参数的面向谐振式光学陀螺的球形谐振腔敏感单元. D=1260 μm时, 球腔品质因数 Q=7.18×107, 得到的最优陀螺灵敏度约为10°/h, 满足商业级应用的需求, 为芯片级、高精度、低成本的新型谐振式光学微腔陀螺的研究奠定了实验基础.
    Based on the development of high sensitivity, low cost, high integration and miniaturization demand of the resonant micro-optical gyro(R-MOG), and in order to achieve a resonant micro-optical-mechano-electrical integrative gyro having high sensitivity, a microsphere optical resonator key sensitive element for producting a cavity with high quality value (Q value) and large diameter in the field of integrated optical micro resonator is proposed, for making a resonant micro optical gyro. Microsphere optical resonator is made by means of water-hydrogen flame melting, and the SiO2 microspherical cavity is formed under the natural cooling and contraction surface tension. Microsphere optical resonator with its diameter D ranging from 300 μm to 2200 μm is fabricated by melting method with hydrogen flame as a heat source through controlling the hydrogen flame’s area by regulating the flow of hydrogen gas. The resonator serves as the key unit of the resonant optical gyro sensitive parts, its Q value and diameter D have direct effect on the performance of the resonant angular velocity sensor. Affect parameters on the performance of the microsphere optical resonator with different diameters is tested and processed to obtain the result. The corresponding relationship among Q value, DQ product, resonant micro-optical gyro’s sensitivity and microspherical cavity diameter D is analyzed, and the reason for them is given. With the increase of microspherical cavity diameter D, the Q value and DQ product reduce after rising first, while the gyro sensitivity goes to rise and fall. Based on the microsphere optical resonator DQ product optimization research, the resonant micro-optical gyro’s key sensitive unit with best parameters is obtained. When the microspherical cavity diameter D varies from 600 to 200 μm, the gyro sensitivity can meet the condition that δΩ D is 1260 μm, the Q value of microsphere optical resonator is 7.18×107 and the corresponding optimal limited sensitivity of the resonant micro-optical gyro is almost 10°/h, and this result adequately meets the requirement of business level gyro applications. This work can serve as an experimental foundation in the research of new type resonant micro optical gyro at chip level, high accuracy and low cost, and will also provide a technical reference for further study of high integrated and high precision resonant micro optical gyro.
    • 基金项目: 国家自然科学基金杰出青年科学基金(批准号: 51225504)、国家自然科学基金重点项目(批准号: 91123036)和山西省高等学校优秀青年学术带头人支持计划资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51225504), the Key Program of the National Natural Science Foundation of China (Grant No. 91123036), and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.
    [1]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603

    [2]

    Deng S S, Xiao Z S, Yan L, Huang A P 2012 Physics 41 0 (in Chinese) [邓思盛, 肖志松, 燕路, 黄安平 2012 物理 41 0]

    [3]

    Graydon O 2012 Nat. Photonics 6 12

    [4]

    Hotate K, Harumoto M 1997 J. Lightwave. Technol. 15 466

    [5]

    Ciminelli C, Dell’Olio F, Campanella C E, Armenise M N 2010 Adv. Opt. Photonics 2 370

    [6]

    Dell’Olio F, Ciminelli C, Armenise M N, Soares F M, Rehbein W 2012 Indium Phosphide and Related Materials (IPRM) 2012 International Conference on IEEE, August 27-30, 2012 p124

    [7]

    YAN Y Z 2012 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [严英占 2012 博士学位论文 (太原:中北大学)]

    [8]

    Zhang J H, Xu P F, Li X F, Xue C Y, Liu J, Yan S B 2013 J. Appl. Opt. 34 1057 (in Chinese) [张建辉, 徐鹏飞, 李小枫, 薛晨阳, 刘俊, 闫树斌 2013 应用光学 34 1057 ]

    [9]

    Guo Z B, Tang J, Liu J, Wang M H, Shang C L, Lei L H, Xue C Y, Zhang W D, Yan S B 2014 Acta Phys. Sin. 63 227802 (in Chinese) [郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌 2014 63 227802]

    [10]

    Hong L F, Zhang C X, Feng L S, Lei M, Ma Y J 2011 Chin. J. Laser 38 103 (in Chinese) [洪灵菲, 张春熹, 冯丽爽, 雷明, 马迎建 2011 中国激光 38 103 ]

    [11]

    Ma H L, Jin Z H, Ding C, Wang Y L 2004 Chin. J. Laser 31 1001 (in Chinese) [马慧莲, 金仲和, 丁纯, 王跃林 2004 中国激光 31 1001 ]

    [12]

    Ezekiel S, Balsamo S R 1977 Appl. Phys. Lett. 30 478

    [13]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [14]

    Grudinin I S, Matsko A B, Savchenkov A A, Strekalov D, Ilchenko V S, Maleki L 2006 Opt. Commun. 265 33

    [15]

    Vernooy D W, Ilchenko V S, Mabuchi H, Streed E W, Kimble H J 1998 Opt. Lett. 23 247

    [16]

    Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军, 马骏 2010 中国激光 7 1789]

    [17]

    Ward J M, O’Shea D G, Shortt B J, Morrissey M J, Deasy K, Chormaic S G N 2006 Rev. Sci. Instrum. 77 083105

    [18]

    Knight J C, Cheung G, Jacques F, Birks T A 1997 Opt. Lett. 22 1129

    [19]

    Cui J M, Dong C H, Zou C L, Sun F W, Xiao Y F, Han Z F, Guo G C 2013 Appl. Optics 52 298

    [20]

    Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Zhang Y G, Wang L, Xue C Y, Zhang W D, Han Z F, Xiong J J 2011 Opt. Express 19 5753

  • [1]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603

    [2]

    Deng S S, Xiao Z S, Yan L, Huang A P 2012 Physics 41 0 (in Chinese) [邓思盛, 肖志松, 燕路, 黄安平 2012 物理 41 0]

    [3]

    Graydon O 2012 Nat. Photonics 6 12

    [4]

    Hotate K, Harumoto M 1997 J. Lightwave. Technol. 15 466

    [5]

    Ciminelli C, Dell’Olio F, Campanella C E, Armenise M N 2010 Adv. Opt. Photonics 2 370

    [6]

    Dell’Olio F, Ciminelli C, Armenise M N, Soares F M, Rehbein W 2012 Indium Phosphide and Related Materials (IPRM) 2012 International Conference on IEEE, August 27-30, 2012 p124

    [7]

    YAN Y Z 2012 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [严英占 2012 博士学位论文 (太原:中北大学)]

    [8]

    Zhang J H, Xu P F, Li X F, Xue C Y, Liu J, Yan S B 2013 J. Appl. Opt. 34 1057 (in Chinese) [张建辉, 徐鹏飞, 李小枫, 薛晨阳, 刘俊, 闫树斌 2013 应用光学 34 1057 ]

    [9]

    Guo Z B, Tang J, Liu J, Wang M H, Shang C L, Lei L H, Xue C Y, Zhang W D, Yan S B 2014 Acta Phys. Sin. 63 227802 (in Chinese) [郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌 2014 63 227802]

    [10]

    Hong L F, Zhang C X, Feng L S, Lei M, Ma Y J 2011 Chin. J. Laser 38 103 (in Chinese) [洪灵菲, 张春熹, 冯丽爽, 雷明, 马迎建 2011 中国激光 38 103 ]

    [11]

    Ma H L, Jin Z H, Ding C, Wang Y L 2004 Chin. J. Laser 31 1001 (in Chinese) [马慧莲, 金仲和, 丁纯, 王跃林 2004 中国激光 31 1001 ]

    [12]

    Ezekiel S, Balsamo S R 1977 Appl. Phys. Lett. 30 478

    [13]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [14]

    Grudinin I S, Matsko A B, Savchenkov A A, Strekalov D, Ilchenko V S, Maleki L 2006 Opt. Commun. 265 33

    [15]

    Vernooy D W, Ilchenko V S, Mabuchi H, Streed E W, Kimble H J 1998 Opt. Lett. 23 247

    [16]

    Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军, 马骏 2010 中国激光 7 1789]

    [17]

    Ward J M, O’Shea D G, Shortt B J, Morrissey M J, Deasy K, Chormaic S G N 2006 Rev. Sci. Instrum. 77 083105

    [18]

    Knight J C, Cheung G, Jacques F, Birks T A 1997 Opt. Lett. 22 1129

    [19]

    Cui J M, Dong C H, Zou C L, Sun F W, Xiao Y F, Han Z F, Guo G C 2013 Appl. Optics 52 298

    [20]

    Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Zhang Y G, Wang L, Xue C Y, Zhang W D, Han Z F, Xiong J J 2011 Opt. Express 19 5753

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化.  , 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [3] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [5] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统.  , 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [6] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [10] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [11] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [13] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能.  , 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [14] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究.  , 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计.  , 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器.  , 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  6934
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-25
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map