搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光微加工的介质膜损伤修复研究

林圆圆 姜有恩 韦辉 范薇 李学春

引用本文:
Citation:

基于飞秒激光微加工的介质膜损伤修复研究

林圆圆, 姜有恩, 韦辉, 范薇, 李学春

Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining

Lin Yuan-Yuan, Jiang You-En, Wei Hui, Fan Wei, Li Xue-Chun
PDF
导出引用
  • 针对波长1053 nm, 0°高反介质膜元件, 采用有限时域差分法, 模拟分析了损伤修复点边缘与法线的夹角对膜层内电场强度分布的影响, 该角度越小, 修复点的损伤阈值越高. 通过优化飞秒激光微加工过程中的焦斑尺寸、脉冲能量、扫描步长和扫描次数等参数, 获得了夹角为25°、深度为14 μm的修复点. 该修复点典型的损伤阈值为21 J/cm2, 是修复前的2.3倍, 50个修复点的测试结果表明该修复参数具有非常好的可重复性. 修复点的测试结果还验证了修复点边缘与法线的夹角大小与其损伤阈值的关系, 45°的电场强度最大值约为25°的2.5倍, 而45°的损伤阈值约为25°的1/2, 模拟和实验结果一致性较好. 同时, 实验验证了微加工的激光脉宽对修复点损伤阈值的影响, 在只改变脉宽的情况下, 脉宽越长, 损伤阈值越低.
    Electric field distribution, in the wavelength range 1053 nm and 0° high reflection coatings, with different truncated conical pits has been estimated by using the finite difference time domain method (FDTD). Results of simulations indicate that the smaller the angle between the pit’s edge and the normal line, the higher the damage threshold of the mitigation pit. In the experimental process, the dimension of this angle mainly depends on two factors, i.e. the influencing area of the focal spot and the depth of mitigation pits. Because the ratio between them is the angle’s tangent, decreasing the influencing area of the focal spot and increasing the depth of the machined area could yield a mitigation pit with a smaller angle. By optimizing the focal spot size, pulse energy, step size and the number of machining passes of femtosecond laser micromachining, a pit with an angle of 25° and a depth of 14 μm is obtained. The typical damage threshold of the mitigation pit is about 21 J/cm2, which is 2.3 times greater than the fluence-limited defect. Moreover, the laser damage testing results of 50 mitigation pits show that the mitigation process has a good repeatability. The correlation between the cone angle and the damage threshold is also examined, the simulations are in agreement with the experimental results. The ratio of the maximum intensification between 45° and 25° cone angles is ~2.5 and that of the damage threshold between the two angles is ~0.5. At the same time, the relationship between the micromachining pulse width and the damage threshold is also estimated: if other process parameters are kept constant, a longer pulse length tends to produce lower laser-resistant mitigation pits. Compared to the result of 260 fs laser pulse, the truncated conical pit created by 6 ps laser pulse has a smaller depth, which implies that more thermal effect occurs during the miromachining process. However, cracks are not found around the pit. Thus, thermal damage is not the major reason for the decrease of damage threshold. Meanwhile, smaller depth also indicates that the pit has a large cone angle. According to the result of former FDTD simulation, the decrease of damage threshold is mainly caused by electric field enhancement in a pit with a large cone angle.
    [1]

    Wolfe J E, Qiu S R, Stolz C J 2011 Appl. Opt. 50 9

    [2]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [3]

    Wolfe J, Qiu R, Stolz C, Thomas M, Martinez C, Ozkan A 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p750405

    [4]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 10

    [5]

    Geraghty P, Carr W, Draggoo V, Hackel R, Mailhiot C, Norton M 2007 Proceedings of the 38th SPIE Boulder, Colorado, September 25-27, 2006 p64030Q

    [6]

    Qiu S R, Wolf J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2011 Appl. Opt. 50 9

    [7]

    Chen S L 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese) [陈顺利 2013 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)]

    [8]

    Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p75040M

    [9]

    Borden M R, Folta J A, Stolz C J, Taylor J R, Wolfe J E, Griffin A J, Thomas M D 2005 Proceedings of the 37th SPIE Boulder, Colorado, September 19-21, 2005 p59912A

    [10]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 63 224204]

  • [1]

    Wolfe J E, Qiu S R, Stolz C J 2011 Appl. Opt. 50 9

    [2]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [3]

    Wolfe J, Qiu R, Stolz C, Thomas M, Martinez C, Ozkan A 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p750405

    [4]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 10

    [5]

    Geraghty P, Carr W, Draggoo V, Hackel R, Mailhiot C, Norton M 2007 Proceedings of the 38th SPIE Boulder, Colorado, September 25-27, 2006 p64030Q

    [6]

    Qiu S R, Wolf J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2011 Appl. Opt. 50 9

    [7]

    Chen S L 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese) [陈顺利 2013 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)]

    [8]

    Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p75040M

    [9]

    Borden M R, Folta J A, Stolz C J, Taylor J R, Wolfe J E, Griffin A J, Thomas M D 2005 Proceedings of the 37th SPIE Boulder, Colorado, September 19-21, 2005 p59912A

    [10]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 63 224204]

  • [1] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展.  , 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [2] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生.  , 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [3] 刘娅丽, 戚磊, 郑梦珂, 张蓉竹. 划痕缺陷对熔融石英光诱导损伤特性的影响分析.  , 2021, 70(13): 134203. doi: 10.7498/aps.70.20202174
    [4] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究.  , 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [5] 白阳, 张丽娟, 廖威, 周海, 张传超, 陈静, 叶亚云, 蒋一岚, 王海军, 栾晓雨, 袁晓东, 郑万国. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究.  , 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [6] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响.  , 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [7] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型.  , 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [8] 孙晓艳, 雷泽民, 卢兴强, 范滇元. 表面颗粒污染物诱导薄光学元件初始损伤的机理.  , 2014, 63(13): 134201. doi: 10.7498/aps.63.134201
    [9] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料.  , 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [10] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟.  , 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [11] 殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊. 飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究.  , 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [12] 李熙斌, 袁晓东, 贺少勃, 吕海兵, 王海军, 向霞, 郑万国. 激光钝化对熔石英修复后损伤性能影响的实验研究.  , 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [13] 刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究.  , 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [14] 黄进, 蒋晓东, 刘红婕, 吕海兵, 王海军, 袁晓东, 郑万国. 真空环境中紫外脉冲激光对熔石英抗损伤能力的影响.  , 2010, 59(7): 4677-4681. doi: 10.7498/aps.59.4677
    [15] 韩敬华, 冯国英, 杨李茗, 张秋慧, 谢旭东, 朱启华, 周寿桓. 纳秒激光在K9玻璃中聚焦的损伤形貌研究.  , 2008, 57(9): 5558-5564. doi: 10.7498/aps.57.5558
    [16] 赵兴海, 高 杨, 徐美健, 段文涛, 於海武. 纳秒激光诱导石英光纤端面损伤特性研究.  , 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [17] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [18] 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈 健, 晋云霞, 赵元安, 邵建达, 范正修. 多层介质膜脉冲宽度压缩光栅与超短脉冲作用时的性能分析.  , 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [19] 孔伟金, 刘世杰, 沈 健, 沈自才, 邵建达, 范正修. 飞秒激光用多层介质膜脉宽压缩光栅的设计.  , 2006, 55(3): 1143-1147. doi: 10.7498/aps.55.1143
    [20] 刘世杰, 沈 健, 沈自才, 孔伟金, 魏朝阳, 晋云霞, 邵建达, 范正修. 多层介质膜脉冲压缩光栅近场光学特性分析.  , 2006, 55(9): 4588-4594. doi: 10.7498/aps.55.4588
计量
  • 文章访问数:  5683
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-15
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map