搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷电流体中静电关联效应的有效势模型

康艳霜 孙宗利

引用本文:
Citation:

荷电流体中静电关联效应的有效势模型

康艳霜, 孙宗利

Effective potential model for the electrostatic correlation in charged fluids

Kang Yan-Shuang, Sun Zong-Li
PDF
导出引用
  • 基于Nordholm关于等离子体的库仑关联孔穴的概念,提出了描述荷电流体的有效库仑势模型. 采用经典密度泛函理论,计算了受限于纳米微腔中荷电流体的平衡结构. 通过对比计算结果,研究了粒子间的关联效应对体系平衡密度分布和剩余吸附量的影响. 此外,计算并研究了较大尺寸受限空间中荷电粒子的关联效应对体系结构的影响. 研究结果表明:本文提出的有效两体势模型可有效地预测荷电粒子间的库仑关联对体系结构和物理化学性质的影响. 研究结果可为研究和理解其他复杂的势模型体系中的关联效应提供可能的线索.
    Based on the Nordholm's concept of Coulomb repulsive hole for plasma, a model of effective Coulomb potential is proposed to describe the charged fluids. Employing the classical density functional theory, the equilibrium structures of charged fluids confined in nano-cavities are calculated. Through the comparison with the numerical results, the effect of Coulomb correlation on the structure and excess adsorption is studied. In addition, the influence of Coulomb correlation on the structure is also calculated and studied under the condition of larger confinement. It is shown that the effective pair potential proposed here can be successfully used to predict the effects of Coulomb correlation on the structure and other physical chemical properties. Results obtained can provide some useful clues to the understanding of the correlation in other complex model potential system.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:13MS105)、保定市科学研究与发展计划(批准号:13ZF131,13ZR036)和河北省科技计划项目(批准号:13213704)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 13MS105), the Scientific Research and Development Program of Baoding, China (Nos. 13ZF131, 13ZR036), and the Technology Research and Development Program of Hebei, China (Grant No. 13213704).
    [1]

    Evans D F, Wennerström H 1994 The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet (New York: Wiley-VCH) pp87-130

    [2]

    Hansen J P, Löwen H 2000 Annual Rev. Phys. Chem. 51 209

    [3]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 2013 62 214207 (in Chinese)[钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]

    [4]

    Zhang C L, Kong W, Yang F, Liu S F, Hu B L 2013 Acta Phys. Sin. 2013 62 095201 (in Chinese)[张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来 2013 62 095201]

    [5]

    Oosawa F 1968 Biopolymers 6 1633

    [6]

    Guldbrand L, Jönsson B, Wennerström H, Linse P 1984 J. Chem. Phys. 80 2221

    [7]

    Valleau J P, Ivkov R, Torrie G M 1991 J. Chem. Phys. 95 520

    [8]

    Tang Z X, Scriven L E, Davis H T 1992 J. Chem. Phys. 97 9528

    [9]

    Peng B, Yu Y X 2008 J. Phys. Chem. B 112 15407

    [10]

    Peng B, Yu Y X 2008 Langmuir 24 12431

    [11]

    Yu Y X 2009 J. Chem. Phys. 131 024704

    [12]

    You F Q, Yu Y X, Gao G H 2005 J. Phys. Chem. B 109 3512

    [13]

    Nordholm S 1984 Chem. Phys. Lett. 105 302

    [14]

    Evans R 1979 Adv. Phys. 28 143

    [15]

    Henderson D 1992 Fundamentals of Inhomogeneous Fluids, (New York: Dekker) pp85-175

    [16]

    Hansen J P, McDonald I R 2006 Theory of Simple Liquids (London: Academic) pp55-57

    [17]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [18]

    Kroll D M, Laird B B 1990 Phys. Rev. A 42 4806

    [19]

    Mulero A 2008 Theory and Simulation of Hard-Sphere Fluids and Related Systems (Berlin: Springer) pp248-253

    [20]

    Zhou S Q 2008 Chin. Phys. B 17 3812

    [21]

    Xiang Y T, Jamnik A, Yang K W 2010 Chin. Phys. B 19 110505

    [22]

    Gillespie D, Nonner W, Eisenberg R S 2003 Phys. Rev. E 68 031503

    [23]

    Peng B, Yu Y X 2009 J. Chem. Phys. 131 134703

    [24]

    Wang K, Yu Y X, Gao G H 2008 J. Chem. Phys. 128 185101

    [25]

    Yu Y X, Gao G H, Wang X L 2006 J. Phys. Chem. B 110 14418

    [26]

    Harnau L, Dietrich S 2005 Phys. Rev. E 71 011504

    [27]

    Esztermann A, Reich H, Schmidt M 2006 Phys. Rev. E 73 011409

    [28]

    Zhou S Q, Sun H W 2005 J. Phys. Chem. B 109 6397

    [29]

    Velasco E, Mederos L, Sullivan D E 2002 Phys. Rev. E 66 021708

    [30]

    Cinacchi G, Schmid F 2002 J. Phys.: Condens. Matter 14 12223

    [31]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [32]

    Forsman J 2004 J. Phys. Chem. B 108 9236

    [33]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 10156

    [34]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 116 7094

    [35]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 2368

    [36]

    Sun Z L, Kang Y S 2012 Chin. Phys. B 21 066103

  • [1]

    Evans D F, Wennerström H 1994 The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet (New York: Wiley-VCH) pp87-130

    [2]

    Hansen J P, Löwen H 2000 Annual Rev. Phys. Chem. 51 209

    [3]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 2013 62 214207 (in Chinese)[钟诚, 陈智全, 杨伟国, 夏辉 2013 62 214207]

    [4]

    Zhang C L, Kong W, Yang F, Liu S F, Hu B L 2013 Acta Phys. Sin. 2013 62 095201 (in Chinese)[张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来 2013 62 095201]

    [5]

    Oosawa F 1968 Biopolymers 6 1633

    [6]

    Guldbrand L, Jönsson B, Wennerström H, Linse P 1984 J. Chem. Phys. 80 2221

    [7]

    Valleau J P, Ivkov R, Torrie G M 1991 J. Chem. Phys. 95 520

    [8]

    Tang Z X, Scriven L E, Davis H T 1992 J. Chem. Phys. 97 9528

    [9]

    Peng B, Yu Y X 2008 J. Phys. Chem. B 112 15407

    [10]

    Peng B, Yu Y X 2008 Langmuir 24 12431

    [11]

    Yu Y X 2009 J. Chem. Phys. 131 024704

    [12]

    You F Q, Yu Y X, Gao G H 2005 J. Phys. Chem. B 109 3512

    [13]

    Nordholm S 1984 Chem. Phys. Lett. 105 302

    [14]

    Evans R 1979 Adv. Phys. 28 143

    [15]

    Henderson D 1992 Fundamentals of Inhomogeneous Fluids, (New York: Dekker) pp85-175

    [16]

    Hansen J P, McDonald I R 2006 Theory of Simple Liquids (London: Academic) pp55-57

    [17]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [18]

    Kroll D M, Laird B B 1990 Phys. Rev. A 42 4806

    [19]

    Mulero A 2008 Theory and Simulation of Hard-Sphere Fluids and Related Systems (Berlin: Springer) pp248-253

    [20]

    Zhou S Q 2008 Chin. Phys. B 17 3812

    [21]

    Xiang Y T, Jamnik A, Yang K W 2010 Chin. Phys. B 19 110505

    [22]

    Gillespie D, Nonner W, Eisenberg R S 2003 Phys. Rev. E 68 031503

    [23]

    Peng B, Yu Y X 2009 J. Chem. Phys. 131 134703

    [24]

    Wang K, Yu Y X, Gao G H 2008 J. Chem. Phys. 128 185101

    [25]

    Yu Y X, Gao G H, Wang X L 2006 J. Phys. Chem. B 110 14418

    [26]

    Harnau L, Dietrich S 2005 Phys. Rev. E 71 011504

    [27]

    Esztermann A, Reich H, Schmidt M 2006 Phys. Rev. E 73 011409

    [28]

    Zhou S Q, Sun H W 2005 J. Phys. Chem. B 109 6397

    [29]

    Velasco E, Mederos L, Sullivan D E 2002 Phys. Rev. E 66 021708

    [30]

    Cinacchi G, Schmid F 2002 J. Phys.: Condens. Matter 14 12223

    [31]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [32]

    Forsman J 2004 J. Phys. Chem. B 108 9236

    [33]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 10156

    [34]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 116 7094

    [35]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 2368

    [36]

    Sun Z L, Kang Y S 2012 Chin. Phys. B 21 066103

  • [1] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性.  , 2022, 71(12): 127202. doi: 10.7498/aps.71.20220064
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序.  , 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [7] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [8] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究.  , 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [11] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [15] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [17] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 李宏伟, 王太宏. 含InAs自组装量子点肖特基二极管的关联放电效应.  , 2001, 50(10): 2038-2043. doi: 10.7498/aps.50.2038
计量
  • 文章访问数:  6023
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-18
  • 修回日期:  2014-03-20
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map