搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-B-A分子整流特性的端基效应

郭超 张振华 潘金波 张俊俊

引用本文:
Citation:

D-B-A分子整流特性的端基效应

郭超, 张振华, 潘金波, 张俊俊

Effects of end groups on the rectifying performance in D-B-A molecular rectifiers

Guo Chao, Zhang Zhen-Hua, Pan Jin-Bo, Zhang Jun-Jun
PDF
导出引用
  • 利用密度泛函理论和非平衡格林函数方法,研究了基于同一D-B-A分子在改变端基后形成的4个不同的分子器件的电子输运特性及整流效果.研究表明:端基的改变,能明显影响分子器件的整流效果,这是因为端基能影响分子与电极的耦合程度,从而改变了分子轨道的离域性,进而影响分子的电子输运特性及整流效果.更有趣的是,由于分子轨道HOMO和LUMO随偏压极性不同的非对称移动,导致整流器的整流方向与Aviram和Ratner分子整流器相反.
    Using the density-functional theory and the non-equilibrium Greens function method, we investigate the electronic transport properties and rectifying performances of four different molecular devices based on different end groups from the same D-B-A molecule. The results show that the end groups can significantly affect the rectifying performances of such molecular rectifiers, because the end groups can influence the coupling effects between the molecule and the electrodes, thus changing the delocalization of molecular orbitals, and further changing their transport properties and rectifying performances. More interestingly, it is found that the rectifying directions and working mechanism for all of our studied systems are in disagreement with ones proposed originally by Aviram and Ratner. This property can be rationalized through the asymmetric shift of molecular levels under biases of different polarities.
    • 基金项目: 国家自然科学基金(批准号:61071015, 60771059)、湖南省教育厅科技项目(批准号:08A005)和湖南省研究生科研创新项目(批准号:CX2011B367)资助的课题.
    [1]

    Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741

    [2]
    [3]

    Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev.Lett. 96 096803

    [4]
    [5]

    Deng X Q, Zhou J C, Zhang Z H 2010 Acta Phys. Sin. 59 2714 (in Chinese) [邓小清、周继承、张振华 2010 59 2714]

    [6]
    [7]

    Deng X Q, Zhou J C, Zhang Z H, Tang G P, Qiu M 2009 Appl. Phys. Lett. 95 103113

    [8]

    Deng X Q, Zhou J C, Zhang Z H, Qiu M, Tang G P 2009 Appl. Phys. Lett. 95 163109

    [9]
    [10]
    [11]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2010 Appl. Phys. Lett.97 203104

    [12]
    [13]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [14]
    [15]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [16]
    [17]

    Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452

    [18]
    [19]

    Long M Q, Chen K Q, Wang L L 2007 Appl. Phys. Lett. 91 233512

    [20]

    Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106

    [21]
    [22]

    S J van der Molen, Liao J H, Kudernac T, Agustsson J S, Bernard L, Calame M, Wees B J van, Feringa B L, Schonenberger C 2009 Nano Lett. 9 76

    [23]
    [24]

    Donhauser Z J, Mantooth B A, Kelly L A, Monmell J D 2001 Science 292 2303

    [25]
    [26]

    Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506

    [27]
    [28]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [29]
    [30]
    [31]

    Chen B, Metzger R M 1999 J. Phys. Chem. B 103 4447

    [32]
    [33]

    Krzeminski C, Delerue C 2001 Phys. Rev. B 64 085405

    [34]

    Ford M J,Hoft R C, Mcdonagh A M, Cortie M B 2008 J. Phys.: Conden. Matter 20 374106

    [35]
    [36]
    [37]

    Stadler R, Geskin V, Cornil J 2008 J. Phys.: Conden. Matter 20 374105

    [38]
    [39]

    Lenfant S, Krzeminski C, Delerue C, Allan G, Vuillaume D 2003 Nano Lett. 3 741

    [40]

    Xue Y, Datta S, Hong S, Reifenberger R 1999 Phys. Rev. B 59 R7852

    [41]
    [42]
    [43]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin.54 1341 (in Chinese) [邹 斌、李宗良、王传奎、薛其坤 2005 54 1341]

    [44]
    [45]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin.53 1490 (in Chinese) [李宗良、王传奎、罗 毅、薛其坤 2004 53 1490]

    [46]
    [47]

    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer L H 2006 J. Phys. Chem. B 110 2462

    [48]

    Yin X, Liu H M, Zhao J W 2006 J. Chem. Phys. 125 094711

    [49]
    [50]
    [51]

    Xia C J, Fang C F, Hu Z G, Li D M, Liu D S, Jie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟、房常峰、胡朝贵、李冬梅、刘德胜、解士杰、赵明文 2008 57 3148]

    [52]
    [53]

    Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704

    [54]
    [55]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

  • [1]

    Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741

    [2]
    [3]

    Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev.Lett. 96 096803

    [4]
    [5]

    Deng X Q, Zhou J C, Zhang Z H 2010 Acta Phys. Sin. 59 2714 (in Chinese) [邓小清、周继承、张振华 2010 59 2714]

    [6]
    [7]

    Deng X Q, Zhou J C, Zhang Z H, Tang G P, Qiu M 2009 Appl. Phys. Lett. 95 103113

    [8]

    Deng X Q, Zhou J C, Zhang Z H, Qiu M, Tang G P 2009 Appl. Phys. Lett. 95 163109

    [9]
    [10]
    [11]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2010 Appl. Phys. Lett.97 203104

    [12]
    [13]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [14]
    [15]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [16]
    [17]

    Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452

    [18]
    [19]

    Long M Q, Chen K Q, Wang L L 2007 Appl. Phys. Lett. 91 233512

    [20]

    Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106

    [21]
    [22]

    S J van der Molen, Liao J H, Kudernac T, Agustsson J S, Bernard L, Calame M, Wees B J van, Feringa B L, Schonenberger C 2009 Nano Lett. 9 76

    [23]
    [24]

    Donhauser Z J, Mantooth B A, Kelly L A, Monmell J D 2001 Science 292 2303

    [25]
    [26]

    Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506

    [27]
    [28]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [29]
    [30]
    [31]

    Chen B, Metzger R M 1999 J. Phys. Chem. B 103 4447

    [32]
    [33]

    Krzeminski C, Delerue C 2001 Phys. Rev. B 64 085405

    [34]

    Ford M J,Hoft R C, Mcdonagh A M, Cortie M B 2008 J. Phys.: Conden. Matter 20 374106

    [35]
    [36]
    [37]

    Stadler R, Geskin V, Cornil J 2008 J. Phys.: Conden. Matter 20 374105

    [38]
    [39]

    Lenfant S, Krzeminski C, Delerue C, Allan G, Vuillaume D 2003 Nano Lett. 3 741

    [40]

    Xue Y, Datta S, Hong S, Reifenberger R 1999 Phys. Rev. B 59 R7852

    [41]
    [42]
    [43]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin.54 1341 (in Chinese) [邹 斌、李宗良、王传奎、薛其坤 2005 54 1341]

    [44]
    [45]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin.53 1490 (in Chinese) [李宗良、王传奎、罗 毅、薛其坤 2004 53 1490]

    [46]
    [47]

    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer L H 2006 J. Phys. Chem. B 110 2462

    [48]

    Yin X, Liu H M, Zhao J W 2006 J. Chem. Phys. 125 094711

    [49]
    [50]
    [51]

    Xia C J, Fang C F, Hu Z G, Li D M, Liu D S, Jie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟、房常峰、胡朝贵、李冬梅、刘德胜、解士杰、赵明文 2008 57 3148]

    [52]
    [53]

    Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704

    [54]
    [55]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理.  , 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [3] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [4] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [7] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [8] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [9] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [10] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [11] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [12] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [13] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [14] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [15] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [16] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [17] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [18] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [19] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [20] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
计量
  • 文章访问数:  9132
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-28
  • 修回日期:  2011-02-26
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map