搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于描述函数方法的神经群自激振荡特性分析

王俊松 徐瑶

引用本文:
Citation:

基于描述函数方法的神经群自激振荡特性分析

王俊松, 徐瑶

Spontaneous oscillation analysis of neural mass model using describing function approach

Wang Jun-Song, Xu Yao
PDF
导出引用
  • 在无外界刺激时神经群表现为节律性自激振荡,自激振荡是非线性系统特有的一种运动形式. 在非线性描述函数法理论框架下,对神经群模型自激振荡特性进行分析,并揭示其产生机理. 神经群模型的sigmoid非线性函数(简称为S函数)是其自激振荡的根源. 首先,求解S函数的描述函数;然后,基于S 函数的描述函数得到神经群模型正反馈回路S函数和负反馈回路S函数的等效增益,在此基础上将神经群模型转化为可用描述函数法分析的典型结构形式;最后,应用描述函数法理论对神经群模型自激振荡特性进行理论分析,得到自激振荡特性的定量描述,并通过仿真分析对理论分析结果进行了验证. 理论分析及仿真分析结果表明基于描述函数方法的神经群自激振荡特性分析方法是正确有效的. S 函数是神经系统的典型非线性环节,S函数的处理方法及神经群自激振荡特性分析方法对于其他神经模型的自激振荡特性分析具有参考价值.
    Neural mass model (NMM) can generate spontaneous oscillation even in a resting state. However, it remains little known which mechanism is responsible for NMM’s spontaneous oscillation. From dynamical theory, spontaneous oscillation is an intrinsic property of nonlinear system, which means that the sigmoid nonlinear function (S function) of NMM plays a key role in the emergence of its spontaneous oscillation. In this study, describing function approach is employed to analyze the spontaneous oscillation characteristics of a kind of extended NMM. Firstly, the describing function of S function is derived, through which the two S functions in excitatory and inhibitory feedback loop, respectively, are approximated. Secondly, the NMM is transformed into a typical block diagram composed of a nonlinear unit and a linear unit. Thirdly, in the theoretical framework of describing function approach, theoretical analysis of the spontaneous oscillation characteristics of NMM is conducted, and the oscillation frequencies are determined. The simulation results demonstrate that the theoretical results are correct and the employed approach is effective. Since S function exists extensively in neural system, the proposed approach has a potential application in the spontaneous oscillation analysis of other neural model.
    • 基金项目: 国家自然科学基金重大项目(批准号:91132722)资助的课题.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91132722).
    [1]

    Uhlhaas P J, Singer W 2010 Nat. Rev. Neurosci. 11 100

    [2]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [3]

    Liu S B, Wu Y, Hao Z W, Li Y J, Jia N 2012 Acta Phys. Sin. 61 020503 (in Chinese) [刘少宝, 吴莹, 郝忠文, 李银军, 贾宁 2012 61 020503]

    [4]

    Gu H G, Hui L, Jia B 2012 Acta Phys. Sin. 61 080504 (in Chinese) [古华光, 惠磊, 贾冰 2012 61 080504]

    [5]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357

    [6]

    Deco G, Jirsa V K, Robinson P A, Breakspear M, Friston K 2008 PLOS. Comput. Biol. 4 e1000092

    [7]

    Lopes S F H, Hoeks A, Smits H, Zetterberg L H 1974 Kybernetik 15 27

    [8]

    Destexhe A, Sejnowski T J 2009 Biol. Cybern. 101 1

    [9]

    Zavaglia M, Astolfi L, Babiloni F, Ursino M 2008 Biomed. Eng. 55 69

    [10]

    Wendling F, Bartolomei F, Bellanger J J, Chauvel P 2002 Eur. J. Neurosci 15 1499

    [11]

    Liu X, Ma B W, Liu H J 2013 Acta Phys. Sin. 62 020202 (in Chinese) [刘仙, 马百旺, 刘会军 2013 62 020202]

    [12]

    Zheng Y, Luo J J, Harris S, Kennerley A, Berwick J, Billings S A, Mayhew J 2012 NeuroImage 63 81

    [13]

    Stephan K E, Kasper L, Harrison L M, Daunizeau J, den Ouden H E, Breakspear M, Friston K J 2008 NeuroImage 42 649

    [14]

    Babajani A, Soltanian-Zadeh H 2006 IEEE Trans. Biomed. Eng. 53 1794

    [15]

    David O, Friston K J 2003 NeuroImage 20 1743

    [16]

    Buzsáki G, Draguhn A 2004 Science 304 1926

    [17]

    Cui D, Li X L, Ji X Q, Liu L X 2011 Sci. China: Inf. Sci. 54 1283 (in Chinese) [崔冬, 李小俚, 吉学青, 刘兰祥 2011 中国科学: 信息科学 54 1283]

    [18]

    van Rotterdam A, Lopes da Silva F H, van den Ende J, Viergever M A, Hermans A J 1982 Bull. Math. Biol. 44 283

    [19]

    Abbas B F, Hamid S Z 2010 NeuroImage 52 793

    [20]

    Hu S S 2007 Automatic Control Principle (5th Ed.) (Beijing: Science Press) pp408–422 (in Chinese) [胡寿松 2007 自动控制原理 (第五版) (北京: 科学出版社)第408–422 页]

  • [1]

    Uhlhaas P J, Singer W 2010 Nat. Rev. Neurosci. 11 100

    [2]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [3]

    Liu S B, Wu Y, Hao Z W, Li Y J, Jia N 2012 Acta Phys. Sin. 61 020503 (in Chinese) [刘少宝, 吴莹, 郝忠文, 李银军, 贾宁 2012 61 020503]

    [4]

    Gu H G, Hui L, Jia B 2012 Acta Phys. Sin. 61 080504 (in Chinese) [古华光, 惠磊, 贾冰 2012 61 080504]

    [5]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357

    [6]

    Deco G, Jirsa V K, Robinson P A, Breakspear M, Friston K 2008 PLOS. Comput. Biol. 4 e1000092

    [7]

    Lopes S F H, Hoeks A, Smits H, Zetterberg L H 1974 Kybernetik 15 27

    [8]

    Destexhe A, Sejnowski T J 2009 Biol. Cybern. 101 1

    [9]

    Zavaglia M, Astolfi L, Babiloni F, Ursino M 2008 Biomed. Eng. 55 69

    [10]

    Wendling F, Bartolomei F, Bellanger J J, Chauvel P 2002 Eur. J. Neurosci 15 1499

    [11]

    Liu X, Ma B W, Liu H J 2013 Acta Phys. Sin. 62 020202 (in Chinese) [刘仙, 马百旺, 刘会军 2013 62 020202]

    [12]

    Zheng Y, Luo J J, Harris S, Kennerley A, Berwick J, Billings S A, Mayhew J 2012 NeuroImage 63 81

    [13]

    Stephan K E, Kasper L, Harrison L M, Daunizeau J, den Ouden H E, Breakspear M, Friston K J 2008 NeuroImage 42 649

    [14]

    Babajani A, Soltanian-Zadeh H 2006 IEEE Trans. Biomed. Eng. 53 1794

    [15]

    David O, Friston K J 2003 NeuroImage 20 1743

    [16]

    Buzsáki G, Draguhn A 2004 Science 304 1926

    [17]

    Cui D, Li X L, Ji X Q, Liu L X 2011 Sci. China: Inf. Sci. 54 1283 (in Chinese) [崔冬, 李小俚, 吉学青, 刘兰祥 2011 中国科学: 信息科学 54 1283]

    [18]

    van Rotterdam A, Lopes da Silva F H, van den Ende J, Viergever M A, Hermans A J 1982 Bull. Math. Biol. 44 283

    [19]

    Abbas B F, Hamid S Z 2010 NeuroImage 52 793

    [20]

    Hu S S 2007 Automatic Control Principle (5th Ed.) (Beijing: Science Press) pp408–422 (in Chinese) [胡寿松 2007 自动控制原理 (第五版) (北京: 科学出版社)第408–422 页]

  • [1] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响.  , 2022, 71(21): 214205. doi: 10.7498/aps.71.20220865
    [2] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性.  , 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [3] 石峰, 李伟斌, 李景庆, 蓝鼎, 王育人. 限位液滴瞬时失重自激振荡.  , 2015, 64(19): 196801. doi: 10.7498/aps.64.196801
    [4] 汪拓, 吴锋, 李端勇, 陈浩, 林杰. 驻波热声系统的自激振荡机理.  , 2015, 64(4): 044301. doi: 10.7498/aps.64.044301
    [5] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究.  , 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [6] 套格图桑, 白玉梅. 非线性发展方程的Riemann theta 函数等几种新解.  , 2013, 62(10): 100201. doi: 10.7498/aps.62.100201
    [7] 刘仙, 马百旺, 刘会军. 神经群模型中癫痫状棘波的闭环控制性能研究.  , 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
    [8] 李承, 石丹, 邹云屏. 一种具有正弦基函数权值的反馈型神经网络模型.  , 2012, 61(7): 070701. doi: 10.7498/aps.61.070701
    [9] 刘巍, 刘世元, 吴小飞, 张传维. 基于Sigmoid函数的离轴照明光源全参数解析模型.  , 2011, 60(5): 054213. doi: 10.7498/aps.60.054213
    [10] 何文奇, 彭翔, 祁永坤, 孟祥锋, 秦琬, 高志. 基于非线性级联傅里叶变换的光学Hash函数构造.  , 2010, 59(3): 1762-1768. doi: 10.7498/aps.59.1762
    [11] 鄢 然, 罗 勇, 李家胤, 蒲友雷, 王建勋, 雷朝军, 刘迎辉. Kα波段介质加载回旋行波管小信号分析与设计.  , 2008, 57(1): 460-466. doi: 10.7498/aps.57.460
    [12] 吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解.  , 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [13] 刘式适, 付遵涛, 王彰贵, 刘式达. Lam函数和非线性演化方程的扰动方法.  , 2003, 52(8): 1837-1841. doi: 10.7498/aps.52.1837
    [14] 刘 丁, 任海鹏, 孔志强. 基于径向基函数神经网络的未知模型混沌系统控制.  , 2003, 52(3): 531-535. doi: 10.7498/aps.52.531
    [15] 陈昌远, 刘友文. 非谐振子势的精确解和双波函数描述.  , 1998, 47(4): 536-541. doi: 10.7498/aps.47.536
    [16] 林琨智. 无反射势阱中粒子运动的双波函数描述.  , 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [17] 刘全慧. 笛卡儿坐标下空间转子体系的双波函数描述.  , 1993, 42(4): 522-527. doi: 10.7498/aps.42.522
    [18] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅰ).  , 1982, 31(11): 1483-1492. doi: 10.7498/aps.31.1483
    [19] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅱ).  , 1982, 31(11): 1493-1500. doi: 10.7498/aps.31.1493
    [20] 任庚未. 多核子系统波函数的转动群分类.  , 1974, 23(3): 13-25. doi: 10.7498/aps.23.13
计量
  • 文章访问数:  6598
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2013-11-21
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map