-
Recently supramolecular hydrogels have become a hot research point in the field of hydrogels. As promising building block for supramolecular hydrogel, DNA has received considerable attention for its designability and excellent mechanical strength, and DNA hydrogel has shown great potential applications in biological and medical areas. To better understand the structure and property of DNA hydrogel, computational simulation is a very powerful tool to complement experimental study. However, owing to the large size of DNA hydrogel system and long time scale of self-assembly process, it is practically unachievable to simulate the system directly at an all-atom level. Coarse-grained simulations should be developed. In this article, we propose a highly coarse-grained model to investigate the mesoscopic structure of well-designed pure DNA hydrogel constructed by Y-shape DNA blocks and linear DNA linkers with sticky ends. In this model, we ignore almost all the atomic details of the building blocks and only give a coarse-grained description of their shapes, and carefully design the Lennard-Jones (LJ) interaction between coarse-grained particles in order to take into account the fact that any of the three arms of a Y block can only interact with a single linker (i.e., the bond is saturated). To design a suitable interaction, here we use a combination of LJ repulsive potential between like particles and LJ attracting potential between unlike particles. Our simulation results show that the hydrogel has two states, namely, homogeneous liquid-like state at high temperature and spongy gel-like state at low temperature. State of this system is related to the degree of cross-linking which is described by average cross-linking pair number per Y-scaffold here. We find that the pair number per Y-scaffold is positively correlated with the concentration of hydrogel blocks, which is consistent with experimental results. We also investigate the distribution of local structure by using voronoi cells, then predict the hole size of the hydrogel network. By the micro-rheology method, we then determine more precisely the value of the transition temperature to be 0.06/kB-0.10/kB, which is also consistent with experimental result. The quantitative relation between transition temperature and binding energy of sticky ends can hopefully provide guidance for the optimal design of DNA hydrogels. The qualitative and even semi-quantitative agreement between our simulation results and experimental results indicates that our coarse-grained model is a suitable and effective one for this pure DNA hydrogel system. The basic ideas of our model can be generalized to more complicated DNA hydrogel systems.
-
Keywords:
- DNA hydrogel /
- coarse-grained model /
- molecular dynamics simulations /
- liquid-gel transition
[1] Foster J A, Steed J W 2010 Angew. Chem. Int. Ed. 49 6718
[2] Yu G, Yan X, Han C, Huang F 2013 Chem. Soc. Rev. 42 6697
[3] Topuz F, Okay O 2008 Macromolecules 41 8847
[4] Morán M C, Miguel M G, Lindman B 2010 Soft Matter 6 3143
[5] Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797
[6] Angioletti-Uberti S, Mognetti B M, Frenkel D 2016 PCCP 18 6373
[7] Li C, Faulkner-Jones A, Dun A R, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan R R 2015 Angew. Chem. Int. Ed. 54 3957
[8] Amiya T, Tanaka T 1987 Macromolecules 20 1162
[9] Topuz F, Okay O 2009 Biomacromolecules 10 2652
[10] Starr F W, Sciortino F 2006 J. Phys.: Condens. Mater. 18 L347
[11] Dans P D, Walther J, Gómez H, Orozco M 2016 Curr. Opin. Struct. Biol. 37 29
[12] Weiner S J, Kollman P A, Nguyen D T, Case D A 1986 J. Comput. Chem. 7 230
[13] Uusitalo J J, Ingoólfsson H I, Akhshi P, Tieleman D P, Marrink S J 2015 J. Chem. Theory Comput. 11 3932
[14] Collepardo-Guevara R, Schlick T 2014 Proc. Natl. Acad. Sci. USA 111 8061
[15] Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D 2011 Adv. Mater. 23 1117
[16] Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D 2009 Angew. Chem. 121 7796
[17] Ouldridge T E, Louis A A, Doye J P K 2010 Phys. Rev. Lett. 104 178101
[18] Lennard-Jones J E 1931 Proc. Phys. Soc. 43 461
[19] SantaLucia J 1998 Proc. Natl. Acad. Sci. USA 95 1460
[20] Schneider T, Stoll E 1978 Phys. Rev. B 17 1302
[21] Okabe A 1992 Spatial Tessellations (New York: John Wiley & Sons) pp362-363
[22] Aurenhammer F 1991 ACM Comput. Surv. 23 345
[23] Winter D, Horbach J 2013 J. Chem. Phys. 138 12A512
[24] Mason T G, Weitz D 1995 Phys. Rev. Lett. 74 1250
[25] Mizuno D, Head D A 2008 Macromolecules 41 7194
[26] Choi S Q, Steltenkamp S, Zasadzinski J A, Squires T M 2011 Nat. Commun. 2 312
[27] Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327
-
[1] Foster J A, Steed J W 2010 Angew. Chem. Int. Ed. 49 6718
[2] Yu G, Yan X, Han C, Huang F 2013 Chem. Soc. Rev. 42 6697
[3] Topuz F, Okay O 2008 Macromolecules 41 8847
[4] Morán M C, Miguel M G, Lindman B 2010 Soft Matter 6 3143
[5] Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797
[6] Angioletti-Uberti S, Mognetti B M, Frenkel D 2016 PCCP 18 6373
[7] Li C, Faulkner-Jones A, Dun A R, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan R R 2015 Angew. Chem. Int. Ed. 54 3957
[8] Amiya T, Tanaka T 1987 Macromolecules 20 1162
[9] Topuz F, Okay O 2009 Biomacromolecules 10 2652
[10] Starr F W, Sciortino F 2006 J. Phys.: Condens. Mater. 18 L347
[11] Dans P D, Walther J, Gómez H, Orozco M 2016 Curr. Opin. Struct. Biol. 37 29
[12] Weiner S J, Kollman P A, Nguyen D T, Case D A 1986 J. Comput. Chem. 7 230
[13] Uusitalo J J, Ingoólfsson H I, Akhshi P, Tieleman D P, Marrink S J 2015 J. Chem. Theory Comput. 11 3932
[14] Collepardo-Guevara R, Schlick T 2014 Proc. Natl. Acad. Sci. USA 111 8061
[15] Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D 2011 Adv. Mater. 23 1117
[16] Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D 2009 Angew. Chem. 121 7796
[17] Ouldridge T E, Louis A A, Doye J P K 2010 Phys. Rev. Lett. 104 178101
[18] Lennard-Jones J E 1931 Proc. Phys. Soc. 43 461
[19] SantaLucia J 1998 Proc. Natl. Acad. Sci. USA 95 1460
[20] Schneider T, Stoll E 1978 Phys. Rev. B 17 1302
[21] Okabe A 1992 Spatial Tessellations (New York: John Wiley & Sons) pp362-363
[22] Aurenhammer F 1991 ACM Comput. Surv. 23 345
[23] Winter D, Horbach J 2013 J. Chem. Phys. 138 12A512
[24] Mason T G, Weitz D 1995 Phys. Rev. Lett. 74 1250
[25] Mizuno D, Head D A 2008 Macromolecules 41 7194
[26] Choi S Q, Steltenkamp S, Zasadzinski J A, Squires T M 2011 Nat. Commun. 2 312
[27] Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327
计量
- 文章访问数: 7960
- PDF下载量: 383
- 被引次数: 0