-
ReaxFF/lg势函数是在ReaxFF的基础上增加了对范德华引力的描述, 因此可以更好地用于描述晶体密度和结构, 而含能材料密度很大程度上影响着爆轰的宏观性质(如爆速、反应区宽度、能量输出结构等). 本文采用ReaxFF/lg反应力场分析了高温条件下凝聚相CL20-TNT共晶的初始分解情况, 并通过简单的指数函数拟合势能演化曲线获得了平衡和诱导期以及整体反应时间, 随后通过反应速率方程得到了共晶热解的活化能Ea (185.052 kJ/mol). CL20-TNT共晶热解过程中CL20分子均在TNT之前分解完毕, 并且随着温度的升高, TNT的分解速率明显加快, 温度越高二者完全分解所需的时间越接近. 有限时间步长下的产物识别分析显示主要产物为NO2, NO, CO2, N2, H2O, HON, HNO3. NO2是C–NO2和N–NO2键均裂共同贡献的结果, 其产量快速地增加, 达到峰值后开始减少, 此过程伴随着NO2参与其他反应使得NO2中的N原子进入到其他的含N 分子中. 次要产物主要为CO, N2O, N2O5, CHO. N2O具有很强的氧化能力, 使其分布有着剧烈的波动特征.
-
关键词:
- 共晶结构 /
- 高温热解 /
- ReaxFF/lg 势函数 /
- 分子动力学
ReaxFF/lg reactive force field is the extention of ReaxFF by adding a van der Waals attraction term. It can be used to well describe density and structure of crystal, moreover, the macroscopic property of detonation is significantly influenced by the density of energetic material. We report on the initial thermal decomposition of condensed phase CL20-TNT cocrystal under high temperature here. The time evolution curve of the potential energy can be described reasonably well by a single exponential function from which we obtain the initial equilibration and induction time, overall characteristic time of pyrolysis. Afterward, we also obtain the activation energy Ea (185.052 kJ/mol) from these simulations. All the CL20 molecules are completed before TNT decomposition in our simulations. And as the temperature rises, the TNT decomposition rate is significantly accelerated. The higher the temperature at which complete decomposition occurs, the closer to each other the times needed for CL20 and TNT to be completely decomposed will be. Product identification analysis with the limited time steps shows that the main products are NO2, NO, CO2, N2, H2O, HON, HNO3. C–NO2 and N–NO2 bond homolysis jointly contribute to the results of the NO2. The NO2 yield rapid increases to the peak and then decreases subsequently. This process is accompanied with NO2 participating in other reactions so that the N atom of NO2 enters into the other N-containing molecule. Secondary products are mainly CO, N2O, N2O5, CHO. N2O has a strong oxidation ability, so that the distribution has a dramatic fluctuation characteristics.-
Keywords:
- cocrystal structure /
- pyrolysis /
- ReaxFF/lg potential energy /
- molecular dynamics
[1] Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K 2011 J. Therm. Anal. Calorim. 105 529
[2] Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960
[3] Yang Z W, Zhang Y L, Li H Z, Zhou X Q, Nie F D, Li J S, Huang H 2012 Chin. J. Energ. Mater. 20 674 (in Chinese) [杨宗伟, 张艳丽, 李洪珍, 周小清, 聂福德, 李金山, 黄辉 2012 含能材料 20 674]
[4] Yang Z W, Huang H, Li H Z, Zhou X Q, Nie F D, Li J S 2012 Chin. J. Energ. Mater. 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 聂福德, 李金山 2012 含能材料 20 256]
[5] van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A 2005 J. Am. Chem. Soc. 127 11053
[6] Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E 2005 J. Am. Chem. Soc. 127 1146
[7] Lee J S, Jaw K S 2006 J. Therm. Anal. Calorim. 85 463
[8] Olexandr I, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005
[9] Brill T B, James K J 1993 J. Phys. Chem. 97 8759
[10] Fields E K, Meyerson S 1967 J. Am. Chem. Soc. 89 3224
[11] Hand C W, Merritt C, Dipietro C 1977 J. Org. Chem. 42 841
[12] Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074
[13] Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904
[14] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[15] Jenkins T F, Hewitt A D, Grant C L, Thiboutot S, Ampleman G, Walsh M E, Ranney T A, Ramsey C A, Palazzo A J, Pennington J C 2006 J. C. Chemosphere 63 1280
[16] Turcotte R, Vachon M, Kwok Q S M, Wang R P, Jones D E G 2005 Thermochim. Acta 433 105
[17] Plimpton S 1995 J. Comp. Phys. 117 1
[18] Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[19] van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[20] Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502
[21] Ten K A, Aulchenko V M, Lukjanchikov L A, Pruuel E R, Shekhtman L I, Tolochko B P, Zhogin I L, Zhulanov V V 2009 Nucl. Instrum. Methods Phys. Res. A 603 102
[22] Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352
[23] Shaw M S, Johnson J D 1987 J. Appl. Phys. 62 2080
[24] Viecelli J A, Ree F H 1999 J. Appl. Phys. 86 237
[25] Ree R H, Winter N W, Glosli J N 1998 36th European High Pressure Research Group Meeting on Molecular and Low Dimensional Systems under Pressure Catalina, Italy September 7-11, 1998 p165
[26] Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506
[27] Thiel M V, Ree F H 1987 J. Appl. Phys. 62 1761
-
[1] Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K 2011 J. Therm. Anal. Calorim. 105 529
[2] Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960
[3] Yang Z W, Zhang Y L, Li H Z, Zhou X Q, Nie F D, Li J S, Huang H 2012 Chin. J. Energ. Mater. 20 674 (in Chinese) [杨宗伟, 张艳丽, 李洪珍, 周小清, 聂福德, 李金山, 黄辉 2012 含能材料 20 674]
[4] Yang Z W, Huang H, Li H Z, Zhou X Q, Nie F D, Li J S 2012 Chin. J. Energ. Mater. 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 聂福德, 李金山 2012 含能材料 20 256]
[5] van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A 2005 J. Am. Chem. Soc. 127 11053
[6] Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E 2005 J. Am. Chem. Soc. 127 1146
[7] Lee J S, Jaw K S 2006 J. Therm. Anal. Calorim. 85 463
[8] Olexandr I, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005
[9] Brill T B, James K J 1993 J. Phys. Chem. 97 8759
[10] Fields E K, Meyerson S 1967 J. Am. Chem. Soc. 89 3224
[11] Hand C W, Merritt C, Dipietro C 1977 J. Org. Chem. 42 841
[12] Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074
[13] Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904
[14] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[15] Jenkins T F, Hewitt A D, Grant C L, Thiboutot S, Ampleman G, Walsh M E, Ranney T A, Ramsey C A, Palazzo A J, Pennington J C 2006 J. C. Chemosphere 63 1280
[16] Turcotte R, Vachon M, Kwok Q S M, Wang R P, Jones D E G 2005 Thermochim. Acta 433 105
[17] Plimpton S 1995 J. Comp. Phys. 117 1
[18] Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[19] van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[20] Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502
[21] Ten K A, Aulchenko V M, Lukjanchikov L A, Pruuel E R, Shekhtman L I, Tolochko B P, Zhogin I L, Zhulanov V V 2009 Nucl. Instrum. Methods Phys. Res. A 603 102
[22] Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352
[23] Shaw M S, Johnson J D 1987 J. Appl. Phys. 62 2080
[24] Viecelli J A, Ree F H 1999 J. Appl. Phys. 86 237
[25] Ree R H, Winter N W, Glosli J N 1998 36th European High Pressure Research Group Meeting on Molecular and Low Dimensional Systems under Pressure Catalina, Italy September 7-11, 1998 p165
[26] Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506
[27] Thiel M V, Ree F H 1987 J. Appl. Phys. 62 1761
计量
- 文章访问数: 9090
- PDF下载量: 1762
- 被引次数: 0