搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩表示的离子刻蚀仿真三维表面演化方法

杨宏军 宋亦旭 郑树琳 贾培发

引用本文:
Citation:

基于压缩表示的离子刻蚀仿真三维表面演化方法

杨宏军, 宋亦旭, 郑树琳, 贾培发

A 3D profile evolution method of ion etching simulation based on compression representation

Yang Hong-Jun, Song Yi-Xu, Zheng Shu-Lin, Jia Pei-Fa
PDF
导出引用
  • 为了研究表面演化过程的机理, 提出了一种基于压缩表示的三维表面演化方法来模拟等离子体刻蚀工艺,并着重探讨了对离子刻蚀的仿真. 为了解决三维元胞自动机内存需求量大的问题, 该方法将二维数组和动态存储方式相结合, 既实现元胞信息的无损压缩存储, 又保持三维元胞间的空间相关性. 实验结果也表明该方法不仅节省了大量内存, 而且在高分辨率条件下查找离子初始碰撞的表面元胞效率较高, 满足高分辨率仿真的要求. 将该方法应用于实现刻蚀工艺三维表面仿真中, 模拟结果与实验结果对比验证了该方法的有效性.
    In order to study the mechanism of the profile evolution process, a three-dimensional (3D) profile evolution method based on compression representation is proposed to simulate the plasma etching process and consider emphatically ion etching. To solve the problem of large memory requirements of 3D cellular model, the presented method adopts a new data structure, which combines two-dimensional array with dynamic storage, to represent cellular information. The structure realizes the lossless compression of cellular information and keeps the spatial correlation between 3D cells. The experimental results show that the method not only significantly reduces the memory, but also has a higher searching efficiency of surface cell which ion first passes through in high-resolution simulation. The method is applied to 3D profile evolution simulation of silicon etching process. A comparison between the simulation results and the experimental results also verifies the effectiveness of the proposed method.
    • 基金项目: 国家科技重大专项(批准号: 2011ZX2403-002)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX2403-002).
    [1]

    Chang J P, Mahorowala A P, Sawin H H 1998 J. Vac. Sci. Technol. A 16 217

    [2]

    Chang J P, Sawin H H 1997 J. Vac. Sci. Technol. A 15 610

    [3]

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693 (in Chinese) [戴忠玲, 毛明, 王友年 2006 物理 35 693]

    [4]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [5]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [6]

    Kokkoris G, Tserepi A, Boudouvis A G, Gogolides E 2004 J. Vac. Sci. Technol. A 22 1896

    [7]

    Shimada T, Yagisawa T, Makabe T 2006 Jpn. J. App. Phys. 45 132

    [8]

    Ertl O, Selberherr S 2010 Microelectron. Eng. 87 20

    [9]

    Hoang J, Hsu C, Chang J P 2008 J. Vac. Sci. Technol. B 26 1911

    [10]

    Kawai H 2008 Ph. D. Dissertation. (Cambridge: Massachusetts Institute of Technology)

    [11]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [12]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 53 3477]

    [13]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132]

    [14]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]

    [15]

    Bentaleb K, Jetto K, Ez-Zahraouy H, Benyoussef A 2013 Chin. Phys. B 22 018902

    [16]

    Yue H, Shao C F, Chen X M, Hao H R 2008 Acta Phys. Sin. 57 6901 (in Chinese) [岳昊, 邵春福, 陈晓明, 郝合瑞 2008 57 6901]

    [17]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [18]

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501 (in Chinese) [任刚, 陆丽丽, 王炜 2012 61 144501]

    [19]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [20]

    Jin Z, Liu Q X 2006 Chin. Phys. 15 1248

    [21]

    Song Y R, Jiang G P, Xu J G 2011 Acta Phys. Sin. 60 120509 (in Chinese) [宋玉蓉, 蒋国平, 徐加刚 2011 60 120509]

    [22]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平 2011 60 080510]

    [23]

    Ono K, Ohta H, Eriguchi K 2010 Thin Solid Films 518 3461

    [24]

    Chiaramonte L, Colombo R, Fazio G, Garozzo G, La Magna A 2012 Comp. Mater. Sci. 54 227

    [25]

    Du L Q, Li P, Liu J S 2008 Chin. J. Comput. 31 868 (in Chinese) [杜立群, 李璞, 刘军山 2008 计算机学报 31 868]

    [26]

    Zhou Z F, Huang Q A, Li W H, Lu W 2007 IEEE Trans. Comput. Aided Design Integr. Circuits Sys. 26 100

    [27]

    Chang J P, Arnold J C, Zau G C H, Shin H, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [28]

    Fujimoto A, Tanaka T, Iwata K 1986 IEEE Comput. Graph. Appl. 6 16

  • [1]

    Chang J P, Mahorowala A P, Sawin H H 1998 J. Vac. Sci. Technol. A 16 217

    [2]

    Chang J P, Sawin H H 1997 J. Vac. Sci. Technol. A 15 610

    [3]

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693 (in Chinese) [戴忠玲, 毛明, 王友年 2006 物理 35 693]

    [4]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [5]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [6]

    Kokkoris G, Tserepi A, Boudouvis A G, Gogolides E 2004 J. Vac. Sci. Technol. A 22 1896

    [7]

    Shimada T, Yagisawa T, Makabe T 2006 Jpn. J. App. Phys. 45 132

    [8]

    Ertl O, Selberherr S 2010 Microelectron. Eng. 87 20

    [9]

    Hoang J, Hsu C, Chang J P 2008 J. Vac. Sci. Technol. B 26 1911

    [10]

    Kawai H 2008 Ph. D. Dissertation. (Cambridge: Massachusetts Institute of Technology)

    [11]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [12]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 53 3477]

    [13]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132]

    [14]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]

    [15]

    Bentaleb K, Jetto K, Ez-Zahraouy H, Benyoussef A 2013 Chin. Phys. B 22 018902

    [16]

    Yue H, Shao C F, Chen X M, Hao H R 2008 Acta Phys. Sin. 57 6901 (in Chinese) [岳昊, 邵春福, 陈晓明, 郝合瑞 2008 57 6901]

    [17]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [18]

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501 (in Chinese) [任刚, 陆丽丽, 王炜 2012 61 144501]

    [19]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [20]

    Jin Z, Liu Q X 2006 Chin. Phys. 15 1248

    [21]

    Song Y R, Jiang G P, Xu J G 2011 Acta Phys. Sin. 60 120509 (in Chinese) [宋玉蓉, 蒋国平, 徐加刚 2011 60 120509]

    [22]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平 2011 60 080510]

    [23]

    Ono K, Ohta H, Eriguchi K 2010 Thin Solid Films 518 3461

    [24]

    Chiaramonte L, Colombo R, Fazio G, Garozzo G, La Magna A 2012 Comp. Mater. Sci. 54 227

    [25]

    Du L Q, Li P, Liu J S 2008 Chin. J. Comput. 31 868 (in Chinese) [杜立群, 李璞, 刘军山 2008 计算机学报 31 868]

    [26]

    Zhou Z F, Huang Q A, Li W H, Lu W 2007 IEEE Trans. Comput. Aided Design Integr. Circuits Sys. 26 100

    [27]

    Chang J P, Arnold J C, Zau G C H, Shin H, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [28]

    Fujimoto A, Tanaka T, Iwata K 1986 IEEE Comput. Graph. Appl. 6 16

  • [1] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型.  , 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [3] 张兴强, 汪滢, 胡庆华. 交叉口混合交通流元胞自动机模型及仿真研究.  , 2014, 63(1): 010508. doi: 10.7498/aps.63.010508
    [4] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型.  , 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [5] 岳昊, 邵春福, 关宏志, 段龙梅. 基于元胞自动机的行人视线受影响的疏散流仿真研究.  , 2010, 59(7): 4499-4507. doi: 10.7498/aps.59.4499
    [6] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究.  , 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [7] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析.  , 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [8] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型.  , 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [9] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型.  , 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [10] 李庆定, 董力耘, 戴世强. 公交车停靠诱发交通瓶颈的元胞自动机模拟.  , 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [11] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织.  , 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [12] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究.  , 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [13] 梅超群, 黄海军, 唐铁桥. 高速公路入匝控制的一个元胞自动机模型.  , 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [14] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究.  , 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [15] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究.  , 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究.  , 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [17] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究.  , 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [18] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型.  , 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [19] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型.  , 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] 谭云亮, 周辉, 王泳嘉, 马志涛. 模拟细观非均质材料破坏演化的物理元胞自动机理论.  , 2001, 50(4): 704-710. doi: 10.7498/aps.50.704
计量
  • 文章访问数:  6147
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-31
  • 修回日期:  2013-08-01
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map