搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柱对称梯度折射率体系的可调控光束传输

温广锋 赵领中 张琳 陈毅云 罗圻林 方安安 刘士阳

引用本文:
Citation:

基于柱对称梯度折射率体系的可调控光束传输

温广锋, 赵领中, 张琳, 陈毅云, 罗圻林, 方安安, 刘士阳

Tunable beam propagation based on cylindrically symmetric gradient index system

Wen Guang-Feng, Zhao Ling-Zhong, Zhang Lin, Chen Yi-Yun, Luo Qi-Lin, Fang An-An, Liu Shi-Yang
PDF
HTML
导出引用
  • 采用磁性电磁超构材料, 设计了具有柱对称梯度折射率分布的二维体系, 根据梯度的不同可以实现光束的不同调制功能. 通过等效介质理论, 可以计算磁性电磁超构材料的等效电磁参数, 从而获得等效折射率. 而且, 随着磁性柱半径的变化, 可以实现等效折射率的灵活调制. 尤为特别的是, 通过改变外加偏置磁场的空间分布, 可以实现不同的折射率梯度, 这也是磁性电磁超构材料相对于普通介质体系的优越性. 基于多重散射理论, 对光束在二维体系中的传输行为进行了模拟计算, 研究结果表明通过调制外加偏置磁场可以实现光束的囚禁、光束的内偏折和外偏折、以及分束等功能. 而且, 通过改变外加磁场可以实现不同功能间的切换, 这种灵活的调制能力为光束传输提供了新的自由度.
    In this work, a cylindrically symmetric gradient-refractivity two-dimensional electromagnetic system is constructed by using the magnetic metamaterials consisting of an array of ferrite rods. With the change of the bias magnetic field, the different gradient-refractivity systems can be obtained, based on which a tunable flexible beam is demonstrated. Based on the effective-medium theory, the effective electric permittivity and the effective magnetic permeability can be retrieved and thus the effective refractive index is obtained straightforwardly. It is shown that with the variation of the ferrite rod radius, an effective refractivity profile with particular gradient can be realized, which exhibits the electromagnetic “black-hole-like” effect. Especially, the gradient refractivity profile is also designed by introducing the gradient bias magnetic field, which, in principle, results in the refractivity profile with many different gradients. Finally, the propagation of a Gaussian beam in the gradient-refractivity system is simulated by using the multiple scattering theory. A few different phenomena are observed such as the “black-hole” effect, the interior beam deflection, the exterior beam deflection, and the beam splitting. Furthermore, the functionalities can be switched between each other by controlling the bias magnetic field and adding an additional degree of freedom for beam propagation.
      通信作者: 刘士阳, syliu@zjnu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574275)、浙江省自然科学基金(批准号: LR16A040001)和广西高校中青年教师科研基础能力提升项目(批准号: 2022KY1604)资助的课题.
      Corresponding author: Liu Shi-Yang, syliu@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574275), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16A040001), and the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi Province, China (Grant No. 2022 KY1604).
    [1]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals (New Jersey: Princeton University Press)

    [2]

    Yan B, Xie J L, Liu E X, Peng Y C, Ge R, Liu J J, Wen S C 2019 Phys. Rev. Appl. 12 044004Google Scholar

    [3]

    Vaidya S, Benalcazar W A, Cerjan A, Rechtsman M C 2021 Phys. Rev. Lett. 127 023605Google Scholar

    [4]

    Shi F L, Cao Y, Chen X D, Liu J W, Chen W J, Chen M, Dong J W 2021 Phys. Rev. Appl. 15 024002Google Scholar

    [5]

    Xie B Y, Su G X, Wang H F, Liu F, Hu L M, Yu S Y, Zhan P, Lu M H, Wang Z L, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [6]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [7]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [9]

    Chen H T, Taylor A J, Yu N F 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [10]

    Li L, Liu Z X, Ren X F, Wang S M, Su V, Chen M K, Chu C H, Kuo H Y, Liu B H, Zang W B, Guo G C, Zhang L J, Wang Z L, Zhu S N, Tsai D P 2020 Science 368 1487Google Scholar

    [11]

    Nikolov D K, Bauer A, Cheng F, Kato H, Vamivakas A N, Rolland J P 2021 Sci. Adv. 7 eabe5112Google Scholar

    [12]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [13]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [14]

    Lai Y, Ng J, Chen H Y, Zhang Z Q, Chan C T 2010 Front. Phys. China 5 308Google Scholar

    [15]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [16]

    McCall M, Pendry J B, Galdi V, et al. 2018 J. Opt. 20 063001Google Scholar

    [17]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [18]

    Zhu J, Liu Y Q, Liang Z X, Chen T N, Li J S 2018 Phys. Rev. Lett. 121 234301Google Scholar

    [19]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [20]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [21]

    Elyasi M, Bhatia C S, Qiu C W, Yang H 2016 Phys. Rev. B 93 104418Google Scholar

    [22]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [23]

    Magnus F, Wood B, Moore J, Morrison K, Perkings G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [24]

    Xu Y D, Fu Y Y, Chen H Y 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [25]

    Xu L, Chen H Y, Tyc T, Xie Y B, Cummer S A 2016 Phys. Rev. B 93 041406Google Scholar

    [26]

    Xu L, Ge H, Li J S, He R Q, Zhou J J, Zhu S N, Liu H, Chen H Y, 2020 Phys. Rev. Appl. 13 054007Google Scholar

    [27]

    Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [28]

    Smolyaninova V N, Smolyaninov I I, Kildishev A V, Shalaev V 2010 Opt. Lett. 35 3396Google Scholar

    [29]

    Zentgraf T, Liu Y M, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [30]

    Bitton O, Bruch R, Leonhardt U 2018 Phys. Rev. Appl. 10 044059Google Scholar

    [31]

    Zhang Y, He Y, Wang H W, Sun L, Su Y K 2021 ACS Photonics 8 202

    [32]

    Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687Google Scholar

    [33]

    Torres T, Patrick S, Coutant A, Richartz M, Tedford E W, Weinfurtner S 2017 Nat. Phys. 13 833Google Scholar

    [34]

    Roldán-Molina A, Nunez A S, Duine R A 2017 Phys. Rev. Lett. 118 061301Google Scholar

    [35]

    Mi Y Z, Zhai W, Cheng L, Xi C Y, Yu X 2021 Appl. Phys. Lett. 118 114101Google Scholar

    [36]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407Google Scholar

    [37]

    Yu X N, Chen H J, Lin H X, Zhou J L, Yu J J, Qian C X, Liu S Y 2014 Opt. Lett. 39 4643Google Scholar

    [38]

    林海笑, 俞昕宁, 刘士阳 2015 64 034203Google Scholar

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203Google Scholar

    [39]

    Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)

    [40]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [41]

    Centeno E, Cassagne D, Albert J P 2006 Phys. Rev. B 73 235119Google Scholar

    [42]

    Kurt H, Citrin D S 2007 Opt. Express 15 1240Google Scholar

    [43]

    Wu Q, Gibbons J M, Park W 2008 Opt. Express 16 16941Google Scholar

    [44]

    Vasic B, Isic G, Gajic R, Hingerl K 2010 Opt. Express 18 20321Google Scholar

    [45]

    Liu S Y, Li L, Lin Z F, Chen H Y, Zi J, Chan C T 2010 Phys. Rev. B 82 054204Google Scholar

    [46]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526Google Scholar

    [47]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609Google Scholar

    [48]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Opt. Lett. 33 2476Google Scholar

    [49]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Phys. Rev. A 78 043803Google Scholar

    [50]

    Chen J F, Liang W Y, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar

    [51]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912Google Scholar

    [52]

    Xu Y D, Gu C D, Hou B, Lai Y, Li J S, Chen H Y 2013 Nat. Commun. 4 2561Google Scholar

    [53]

    Wu H B, Xi X, Li X M, Poo Y, Liu S Y, Wu R X 2022 Photonics Res. 10 610Google Scholar

    [54]

    Luo Q L, Zhao L Z, Zhou J L, Zhang L, Wen G F, Ba Q T, Wu H B, Lin Z F, Liu S Y 2022 Front. Mater. 9 845344Google Scholar

  • 图 1  通过改变结构中的半径分布来实现折射率梯度指数 $\eta = 2$ 的体系 (a) 结构示意图显示该体系包括 25 层, 每层的厚度 $a = 12{\text{ }}{\rm{mm}}$, 内核吸收体半径 ${r_{\rm{c}}} = 5 a$, 体系的半径 $ R = 25 a $, 磁性柱的相对介电常数 ${\varepsilon _{\rm{s}}} = 25$; (b) 不同壳层中的磁性柱半径和 (c) 相应的等效介电常数 ${\varepsilon _{{\rm{eff}}}}$、等效磁导率 ${\mu _{{\rm{eff}}}}$ 及由此得到的等效折射率 ${n_{{\rm{eff}}}}$; 高斯光束入射到该体系的(d)电场分布和(e)强度分布. 施于体系的外加偏置磁场${H_0} = 480{\text{ }}{\rm{Oe}}$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系的边界和内核吸收体的边缘位置

    Fig. 1.  The system with gradient index $\eta = 2$ are implemented by varying the rod radius: (a) Schematic diagram presents the system made up of 25 concentric layers with the layer thickness $a = 12{\text{ }}\rm mm$, the radius of the absorbing core part ${r_{\rm{c}}} = 5 a$, the radius of the system $ R = 25 a $, and the relative permittivity of the ferrite rod ${\varepsilon _{\rm{s}}} = 25$; (b) ferrite rod radius as well as (c) the effective permittivity ${\varepsilon _{{\rm{eff}}}}$, permeability ${\mu _{{\rm{eff}}}}$, and the corresponding effective index ${n_{{\rm{eff}}}}$ are plotted as the functions of the number of the layer; (d) electric field pattern and (e) corresponding intensity pattern are simulated for the on-center incidence of a Gaussian beam on the system. The bias magnetic field is ${H_0} = 480{\text{ }}{\rm{Oe}}$ and the operating frequency is$f = 2.7$GHz. Two white circles denote the boundaries of the system and the absorbing core part, respectively.

    图 2  采用等效介质理论计算${\varepsilon _{{\rm{eff}}}}$${\mu _{{\rm{eff}}}}$ 以及${n_{{\rm{eff}}}}$ 随外加偏置磁场 ${H_0}$ 的变化. 把磁性电磁超构材料看成是正方晶格, 晶格常数为 $a = 12{\text{ }}{\rm{mm}}$, 考察了两种不同磁性柱大小的情形 (a) 磁性柱半径为 $r_{\rm{s}}' = 0.12 a$; (b) 磁性柱半径为 ${r_{\rm{s}}} = 0.35 a$. 工作频率为$f = 2.7$ GHz

    Fig. 2.  The effective permittivity ${\varepsilon _{{\rm{eff}}}}$, permeability ${\mu _{{\rm{eff}}}}$, and the corresponding effective index ${n_{{\rm{eff}}}}$ retrieved with the effective-medium theory are plotted as the functions of the bias magnetic field ${H_0}$. The magnetic metamaterial is considered as a square lattice with lattice separation $a = 12{\text{ }}{\rm{mm}}$ and two different rod radii with (a) $r_{\rm{s}}' = 0.12 a$ and (b) ${r_{\rm{s}}} = 0.35 a$ are investigated. The operating frequency is$f = 2.7$ GHz.

    图 3  通过改变空间中的外加偏置磁场 ${H_0}$ 分布实现折射率梯度指数 $\eta = 2$ 的体系 (a) 结构示意图显示该体系包括 25 层, 每层的厚度 $a = 12{\text{ }}{\rm{mm}}$, 内核吸收体半径 $r_{\rm{c}}' = 7 a$, 折射率梯度区域的内壳层半径为 $ {r_1} = 20 a $, 体系的半径 $ R = 25 a $; (b) 不同壳层中的外加磁场 ${H_0}$ 的分布; (c) 相应的${\varepsilon_{{\rm{eff}}}}$, ${\mu_{{\rm{eff}}}}$${n_{\rm eff}}$. 高斯光束对心入射到该体系的(d)电场分布, (e)强度分布以及偏心入射的(f)电场分布和(g)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$, $r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$ GHz, 白色圆形标记出体系不同区域的位置

    Fig. 3.  The system with gradient index $\eta = 2$ are implemented by varying the distribution of bias magnetic field ${H_0}$: (a) Schematic diagram presents the system made up of 25 concentric layers with the layer thickness $a = 12{\text{ }}{\rm{mm}}$, the radius of the absorbing core part $r_{\rm{c}}' = 7 a$, the inner radius of the gradient index area is $ {r_1} = 20 a $, and the radius of the system $ R = 25 a $; (b) the bias magnetic field ${H_0}$; (c) ${\varepsilon_{{\rm{eff}}}}$, ${\mu_{{\rm{eff}}}}$, ${n_{\rm eff}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((d), (e)) and off-center ((f), (g)) incidence of a Gaussian beam on the system to illustrate the electromagnetic “black hole” effect. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$ GHz. Three white circles denote the boundaries of different areas in the system.

    图 4  通过改变空间中的外加偏置磁场${H_0}$分布实现折射率梯度指数 $\eta = - 1$ 的体系, 体系结构与图 3 相同 (a)外加偏置磁场${H_0}$的分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$ 分布. 高斯光束对心入射到该体系的(c)电场分布, (d)强度分布, 以及偏心入射的(e)电场分布, (f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\text{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Fig. 4.  The system with gradient index $\eta = - 1$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig. 3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$ GHz. Three white circles denote the boundaries of different areas in the system.

    图 5  通过改变空间中的外加偏置磁场${H_0}$分布来实现折射率梯度指数$\eta = 1$的体系. 体系结构与图 3 相同 (a)外加偏置磁场${H_0}$的分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$ ${n_{{\rm{eff}}}}$. 高斯光束对心入射到该体系的(c)电场分布和(d)强度分布, 以及偏心入射的(e)电场分布和(f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Fig. 5.  The system with gradient index $\eta = 1$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig.3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$GHz. Three white circles denote the boundaries of different areas in the system.

    图 6  通过改变空间中的外加偏置磁场 ${H_0}$ 分布实现折射率梯度指数 $\eta = 3$ 的体系, 体系结构与图 3 相同 (a)外加偏置磁场 ${H_0}$分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. 高斯光束对心入射到该体系的(c)电场分布, (d)强度分布, 以及偏心入射的(e)电场分布, (f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Fig. 6.  The system with gradient index $\eta = 3$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig. 3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$GHz. Three white circles denote the boundaries of different areas in the system.

    Baidu
  • [1]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals (New Jersey: Princeton University Press)

    [2]

    Yan B, Xie J L, Liu E X, Peng Y C, Ge R, Liu J J, Wen S C 2019 Phys. Rev. Appl. 12 044004Google Scholar

    [3]

    Vaidya S, Benalcazar W A, Cerjan A, Rechtsman M C 2021 Phys. Rev. Lett. 127 023605Google Scholar

    [4]

    Shi F L, Cao Y, Chen X D, Liu J W, Chen W J, Chen M, Dong J W 2021 Phys. Rev. Appl. 15 024002Google Scholar

    [5]

    Xie B Y, Su G X, Wang H F, Liu F, Hu L M, Yu S Y, Zhan P, Lu M H, Wang Z L, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [6]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [7]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [9]

    Chen H T, Taylor A J, Yu N F 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [10]

    Li L, Liu Z X, Ren X F, Wang S M, Su V, Chen M K, Chu C H, Kuo H Y, Liu B H, Zang W B, Guo G C, Zhang L J, Wang Z L, Zhu S N, Tsai D P 2020 Science 368 1487Google Scholar

    [11]

    Nikolov D K, Bauer A, Cheng F, Kato H, Vamivakas A N, Rolland J P 2021 Sci. Adv. 7 eabe5112Google Scholar

    [12]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [13]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [14]

    Lai Y, Ng J, Chen H Y, Zhang Z Q, Chan C T 2010 Front. Phys. China 5 308Google Scholar

    [15]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [16]

    McCall M, Pendry J B, Galdi V, et al. 2018 J. Opt. 20 063001Google Scholar

    [17]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [18]

    Zhu J, Liu Y Q, Liang Z X, Chen T N, Li J S 2018 Phys. Rev. Lett. 121 234301Google Scholar

    [19]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [20]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [21]

    Elyasi M, Bhatia C S, Qiu C W, Yang H 2016 Phys. Rev. B 93 104418Google Scholar

    [22]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [23]

    Magnus F, Wood B, Moore J, Morrison K, Perkings G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [24]

    Xu Y D, Fu Y Y, Chen H Y 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [25]

    Xu L, Chen H Y, Tyc T, Xie Y B, Cummer S A 2016 Phys. Rev. B 93 041406Google Scholar

    [26]

    Xu L, Ge H, Li J S, He R Q, Zhou J J, Zhu S N, Liu H, Chen H Y, 2020 Phys. Rev. Appl. 13 054007Google Scholar

    [27]

    Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [28]

    Smolyaninova V N, Smolyaninov I I, Kildishev A V, Shalaev V 2010 Opt. Lett. 35 3396Google Scholar

    [29]

    Zentgraf T, Liu Y M, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [30]

    Bitton O, Bruch R, Leonhardt U 2018 Phys. Rev. Appl. 10 044059Google Scholar

    [31]

    Zhang Y, He Y, Wang H W, Sun L, Su Y K 2021 ACS Photonics 8 202

    [32]

    Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687Google Scholar

    [33]

    Torres T, Patrick S, Coutant A, Richartz M, Tedford E W, Weinfurtner S 2017 Nat. Phys. 13 833Google Scholar

    [34]

    Roldán-Molina A, Nunez A S, Duine R A 2017 Phys. Rev. Lett. 118 061301Google Scholar

    [35]

    Mi Y Z, Zhai W, Cheng L, Xi C Y, Yu X 2021 Appl. Phys. Lett. 118 114101Google Scholar

    [36]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407Google Scholar

    [37]

    Yu X N, Chen H J, Lin H X, Zhou J L, Yu J J, Qian C X, Liu S Y 2014 Opt. Lett. 39 4643Google Scholar

    [38]

    林海笑, 俞昕宁, 刘士阳 2015 64 034203Google Scholar

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203Google Scholar

    [39]

    Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)

    [40]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [41]

    Centeno E, Cassagne D, Albert J P 2006 Phys. Rev. B 73 235119Google Scholar

    [42]

    Kurt H, Citrin D S 2007 Opt. Express 15 1240Google Scholar

    [43]

    Wu Q, Gibbons J M, Park W 2008 Opt. Express 16 16941Google Scholar

    [44]

    Vasic B, Isic G, Gajic R, Hingerl K 2010 Opt. Express 18 20321Google Scholar

    [45]

    Liu S Y, Li L, Lin Z F, Chen H Y, Zi J, Chan C T 2010 Phys. Rev. B 82 054204Google Scholar

    [46]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526Google Scholar

    [47]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609Google Scholar

    [48]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Opt. Lett. 33 2476Google Scholar

    [49]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Phys. Rev. A 78 043803Google Scholar

    [50]

    Chen J F, Liang W Y, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar

    [51]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912Google Scholar

    [52]

    Xu Y D, Gu C D, Hou B, Lai Y, Li J S, Chen H Y 2013 Nat. Commun. 4 2561Google Scholar

    [53]

    Wu H B, Xi X, Li X M, Poo Y, Liu S Y, Wu R X 2022 Photonics Res. 10 610Google Scholar

    [54]

    Luo Q L, Zhao L Z, Zhou J L, Zhang L, Wen G F, Ba Q T, Wu H B, Lin Z F, Liu S Y 2022 Front. Mater. 9 845344Google Scholar

  • [1] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析.  , 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [2] 郑红霞, 周鑫, 韩影, 俞昕宁, 刘士阳. 基于双粒子耦合的单层介质柱阵列对电磁波的调控.  , 2015, 64(22): 224201. doi: 10.7498/aps.64.224201
    [3] 耿滔, 王岩, 王新, 董祥美. 非长波极限下二维光子晶体中横电模的等效介质理论.  , 2015, 64(15): 154210. doi: 10.7498/aps.64.154210
    [4] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控.  , 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [5] 刘晓波, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学. 折射率梯度表面机理的研究.  , 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [6] 周建华, 李栋华, 曾阳素, 朱鸿鹏. 梯度负折射率介质中高斯光束传输特性的研究.  , 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [7] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究.  , 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [8] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究.  , 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [9] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究.  , 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [10] 黄毅华, 江东亮, 张景贤, 林庆玲. 高折射率Nd,La共掺杂氧化钇透明陶瓷的光谱性质及其Judd-Ofelt理论分析.  , 2010, 59(1): 300-306. doi: 10.7498/aps.59.300
    [11] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析.  , 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [12] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式.  , 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [13] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究.  , 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] 沈自才, 邵建达, 王英剑, 范正修. 斜角入射沉积法制备渐变折射率薄膜的理论探讨.  , 2005, 54(7): 3069-3074. doi: 10.7498/aps.54.3069
    [15] 徐新华, 崔一平. 矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算.  , 2003, 52(1): 96-101. doi: 10.7498/aps.52.96
    [16] 刘承宜, 邓冬梅, 胡巍, 郭弘. 复数折射率介质中光束传输的Schro..dinger形式理论研究.  , 2002, 51(3): 524-526. doi: 10.7498/aps.51.524
    [17] 朱 萍, 唐景昌, 何江平. 多重散射团簇方法对吸附系统SO2/Ag(110)的理论分析.  , 2000, 49(8): 1632-1638. doi: 10.7498/aps.49.1632
    [18] 庄飞, 唐景昌, 何江平, 汪雷. 多重散射团簇理论对CO/NiO(100),NO/NiO(100)吸附系统的分析与比较.  , 2000, 49(3): 570-576. doi: 10.7498/aps.49.570
    [19] 唐景昌, 付送保, 季红, 陈一兵. 利用原子集团多重散射理论决定HCOO-Cu(110)的结构.  , 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
    [20] 潘晓川, 梁晓玲, 李家明. 量子数亏损理论——多重散射计算方法.  , 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
计量
  • 文章访问数:  3919
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 修回日期:  2022-03-27
  • 上网日期:  2022-07-03
  • 刊出日期:  2022-07-20

/

返回文章
返回
Baidu
map