-
本文基于二维磁性柱周期阵列设计了具有等效零折射率的磁性特异电磁介质. 通过多重散射理论计算体系的光子能带和等效介质理论提取体系的等效电磁参量可以确定该磁性特异电磁介质可以实现等效介电常数和等效磁导率同时为零. 利用该双零磁性特异电磁介质可以实现电磁波在无相位延迟下的传输, 从而可以调控电磁波的空间相位变化. 进而, 通过设计具有不同电磁波输出界面的构型实现了高斯光束的波前由平面转变成柱面, 还可以实现高斯光束的聚焦和高斯光束的分束. 也可以根据需要设计具有更为一般的输出界面, 实现更为多样的电磁波波前的调控. 而且, 磁性材料的电磁特性可以通过温度和外加磁场进行调制, 因此该双零磁性特异电磁介质的工作频率可以灵活控制, 这更便于电磁波器件的设计和应用.In this work, a zero index magnetic metamaterial (ZIMM) is designed based on the two-dimensional array of ferrite rods periodically arranged in the air. By calculating the photonic band structures within the framework of multiple scattering theory and retrieving the effective electric permittivity εeff and effective magnetic permeability μeff, the structure parameters can be optimized and then the effectively matched zero index with εeff = μeff = 0 is achieved. Within this matched ZIMM, electromagnetic (EM) wave can propagate without any phase delay, resulting in the manipulation of phase pattern in space. By simulating the electric field patterns of a Gaussian beam incident on ZIMM slabs with different thickness, zero phase delay inside the slab can be observed. By designing various outgoing interfaces a plane EM wavefront can be transformed into a cylindrical one, or even into a more general wavefront. In addition, the focusing and beam splitting effects are demonstrated as well. Besides, since the permeability of magnetic materials can be controlled by an external magnetic field or a temperature, the EM features of ZIMM can be flexibly tuned, enabling a promising prospect in designing EM devices and potential applications.
-
Keywords:
- zero index metamaterial /
- Mie scattering theory /
- multiple scattering theory /
- effective-medium theory
[1] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
[2] Gómez R J, Janke C, Bolivar P, Kurz H 2005 Opt. Express 13 847
[3] Spitzer W G, Kleinman D, Walsh D 1959 Phys. Rev. 113 127
[4] Veselago V C 1968 Sov. Phys. Usp. 10 509
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[7] He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808
[8] Monticone F, Alù A 2014 Chin. Phys. B 23 047809
[9] Edwards B, Alù A, Young M, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903
[10] Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903
[11] Jin Y, Zhang P, He S L 2010 Phys. Rev. B 81 085117
[12] Jin Y, He S L 2010 Opt. Express 18 16587
[13] Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119
[14] Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582
[15] Cheng Q, Jiang W X, Cui T J 2011 Appl. Phys. Lett. 99 131913
[16] Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903
[17] Silveirinha M G, Engheta N 2006 Phys. Rev. Lett. 97 157403
[18] Cheng Q, Liu R P, Huang D, Cui T J, Smith D R 2007 Appl. Phys. Lett. 91 234105
[19] Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109
[20] Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
[21] Yuan Y, Shen L F, Ran L X, Jiang T, Huangfu J T, Kong J A 2008 Phys. Rev. A 77 053821
[22] Ma Y G, Wang P, Chen X, Ong C K 2009 Appl. Phys. Lett. 94 044107
[23] Edwards B, Alù, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905
[24] Luo J, Xu P, Chen H Y, Hou B, Gao L, Lai Y 2012 Appl. Phys. Lett. 100 221903
[25] Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109
[26] Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908
[27] Wang N, Chen H J, Lu W L, Liu S Y, Lin Z F 2013 Opt. Express 21 23712
[28] Alù A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410
[29] Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102]
[30] Yang H, Wang C H, Guo X R 2014 Acta Phys. Sin. 63 014103 (in Chinese) [杨怀, 王春华, 郭小蓉 2014 63 014103]
[31] Liu S Y, Du J J, Lin Z F, Wu R X, Chui S T 2008 Phys. Rev. B 78 155101
[32] Bi K, Dong G Y, Fu X J, Zhou J 2012 Appl. Phys. Lett. 103 131915
[33] Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407
[34] Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425
[35] Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912
[36] Yu J J, Chen H J, Wu Y B, Liu S Y 2012 EPL 100 47007
[37] Shen M, Ruan L X, Wang X L, Shi J L, Wang Q 2011 Phys. Rev. A 83 045804
[38] Yannopapas V, Vanakaras A 2011 Phys. Rev. B 84 045128
[39] Litchinitser N M, Maimistov A I, Gabitov I R, Sagdeev R Z, Shalaev V M 2008 Opt. Lett. 33 2350
[40] Ding Y S, Chan C T, Wang R P 2013 Sci. Rep. 3 2954
[41] Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)
[42] Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111
[43] Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101
-
[1] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
[2] Gómez R J, Janke C, Bolivar P, Kurz H 2005 Opt. Express 13 847
[3] Spitzer W G, Kleinman D, Walsh D 1959 Phys. Rev. 113 127
[4] Veselago V C 1968 Sov. Phys. Usp. 10 509
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[7] He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808
[8] Monticone F, Alù A 2014 Chin. Phys. B 23 047809
[9] Edwards B, Alù A, Young M, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903
[10] Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903
[11] Jin Y, Zhang P, He S L 2010 Phys. Rev. B 81 085117
[12] Jin Y, He S L 2010 Opt. Express 18 16587
[13] Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119
[14] Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582
[15] Cheng Q, Jiang W X, Cui T J 2011 Appl. Phys. Lett. 99 131913
[16] Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903
[17] Silveirinha M G, Engheta N 2006 Phys. Rev. Lett. 97 157403
[18] Cheng Q, Liu R P, Huang D, Cui T J, Smith D R 2007 Appl. Phys. Lett. 91 234105
[19] Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109
[20] Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
[21] Yuan Y, Shen L F, Ran L X, Jiang T, Huangfu J T, Kong J A 2008 Phys. Rev. A 77 053821
[22] Ma Y G, Wang P, Chen X, Ong C K 2009 Appl. Phys. Lett. 94 044107
[23] Edwards B, Alù, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905
[24] Luo J, Xu P, Chen H Y, Hou B, Gao L, Lai Y 2012 Appl. Phys. Lett. 100 221903
[25] Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109
[26] Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908
[27] Wang N, Chen H J, Lu W L, Liu S Y, Lin Z F 2013 Opt. Express 21 23712
[28] Alù A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410
[29] Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102]
[30] Yang H, Wang C H, Guo X R 2014 Acta Phys. Sin. 63 014103 (in Chinese) [杨怀, 王春华, 郭小蓉 2014 63 014103]
[31] Liu S Y, Du J J, Lin Z F, Wu R X, Chui S T 2008 Phys. Rev. B 78 155101
[32] Bi K, Dong G Y, Fu X J, Zhou J 2012 Appl. Phys. Lett. 103 131915
[33] Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407
[34] Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425
[35] Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912
[36] Yu J J, Chen H J, Wu Y B, Liu S Y 2012 EPL 100 47007
[37] Shen M, Ruan L X, Wang X L, Shi J L, Wang Q 2011 Phys. Rev. A 83 045804
[38] Yannopapas V, Vanakaras A 2011 Phys. Rev. B 84 045128
[39] Litchinitser N M, Maimistov A I, Gabitov I R, Sagdeev R Z, Shalaev V M 2008 Opt. Lett. 33 2350
[40] Ding Y S, Chan C T, Wang R P 2013 Sci. Rep. 3 2954
[41] Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)
[42] Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111
[43] Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101
计量
- 文章访问数: 6187
- PDF下载量: 444
- 被引次数: 0