Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates

WU Qing NIU Zhongming LIANG Haozhao

Citation:

Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates

WU Qing, NIU Zhongming, LIANG Haozhao
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Nuclear mass, β-decay half-life, and neutron-capture rate are the most important nuclear physics inputs for rapid-neutron capture process (r-process) simulations. Nuclear mass can directly impact the abundance ratio of neighboring isotopes during the (n,γ)-(γ,n) equilibrium stage. On the other hand, nuclear mass influences the predictions of β-decay half-lives and the neutron-capture rates, thus indirectly impacting the r-process simulation. Currently, only about 3000 nuclear masses have been precisely measured in experiments, and many of the nuclear masses involved in r-process simulations can only be predicted by theory models. However, when extrapolating nuclear masses towards the neutron drip line, there are large discrepancies between the predictions of different mass models, which inevitably affects the predictions of β-decay half-lives and neutron-capture rates. In this work, ten mass models are employed to systematically study the impact of nuclear mass uncertainties on β-decay half-lives and neutron-capture rates. The β-decay half-lives and neutron-capture rates are calculated by the β-decay half-life semi-empirical formula and TALYS code, respectively. It has been found that the uncertainties in nuclear mass predictions among different mass models can reach 10 MeV in the neutron-rich region; the differences between the maximum and minimum masses predicted by these models even exceed 30 MeV for some nuclei. For the predictions of β-decay energy Qβ and (n, γ) reaction energy Q(n,γ), there are large deviations mainly around the neutron magic numbers and close to the neutron drip line, with uncertainties about 1 MeV and 2 MeV, respectively. The impact of mass uncertainties on the β-decay half-lives is about 0.6 orders of magnitude for neutron-rich nuclei. The uncertainties of neutron-capture rates increase significantly when extrapolating towards the neutron-rich region. At the temperature of T = 109 K, the average uncertainties of neutron-capture rates range over 2 ∼ 3 orders of magnitude for nuclei near neutron drip line. Taking N = 50, 82, 126, 184 isotones as examples, it is found that the differences between the maximum and minimum neutron-capture rates obtained from various nuclear mass models even exceed 10 orders of magnitude for some nuclei. The Q(n,γ) directly impacts the trend of the neutron-capture rates, and the neutron-capture rates are very sensitive to the uncertainties of Q(n,γ) for neutron-rich nuclei. In addition, the effect of temperature on neutron-capture rates has also been investigated, and it is found that the increase in temperature can reduce the impact of mass uncertainties on the predictions of neutron-capture rates for neutron-rich nuclei. In this work, the β-decay half-lives and neutron-capture rates are calculated based on ten mass tables. Therefore, more self-consistent nuclear physics inputs will be provided for the simulation of the r-process. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00222 (Please use the private access link https://www.scidb.cn/s/iyIZFf to access the dataset during the peer review process).
  • [1]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547

    [2]

    Thielemann F K, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martínez-Pinedo G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346

    [3]

    Kajino T, Aoki W, Balantekin A, Diehl R. Famiano M, Mathews G 2019 Prog. Part. Nucl. Phys. 107 109

    [4]

    Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann F K 2021 Rev. Mod. Phys. 93 015002

    [5]

    Pian E, D’Avanzo P, Benetti S, Branchesi M, Brocato E, Campana S, Cappellaro E, Covino S, D’Elia V, Fynbo J P U, Getman F, Ghirlanda G, Ghisellini G, Grado A, Greco G, Hjorth J, Kouveliotou C, Levan A, Limatola L, Malesani D, Mazzali P A, Melandri A, Møller P, Nicastro L, Palazzi E, Piranomonte S, Rossi A, Salafia O S, Selsing J, Stratta G, Tanaka M, Tanvir N R, Tomasella L, Watson D, Yang S, Amati L, Antonelli L A, Ascenzi S, Bernardini M G, Boër M, Bufano F, Bulgarelli A, Capaccioli M, Casella P, Castro-Tirado A J, Chassande-Mottin E, Ciolfi R, Copperwheat C M, Dadina M, De Cesare G, Di Paola A, Fan Y Z, Gendre B, Giuffrida G, Giunta A, Hunt L K, Israel G L, Jin Z P, Kasliwal M M, Klose S, Lisi M, Longo F, Maiorano E, Mapelli M, Masetti N, Nava L, Patricelli B, Perley D, Pescalli A, Piran T, A. Possenti, Pulone L, Razzano M, Salvaterra R, Schipani P, Spera M, Stamerra A, Stella L, Tagliaferri G, Testa V, Troja E, Turatto M, Vergani S D, Vergani D 2017 Nature 551 67[6] Watson D, Hansen C J, Selsing J, Koch A, Malesani D B, Andersen A C, Fynbo J P U, Arcones A, Bauswein A, Covino S, Grado A, Heintz K E, Hunt L, Kouveliotou C, Leloudas G, Levan A J, Mazzali P, Pian Elena 2019 Nature 574 497

    [6]

    Kobayashi C, Karakas A I, Lugaro M 2020 Astrophys. J. 900 179

    [7]

    Lattimer J M, Schramm D N 1974 Astrophys. J. 192 L145

    [8]

    Meyer B S, Mathews G J, Howard W M, Woosley S E, Hoffman R D 1992 Astrophys. J. 399 656

    [9]

    Woosley S E, Wilson J R, Mathews G J, Hoffman R D, Meyer B S 1994 Astrophys. J. 433 229

    [10]

    Qian Y Z, Woosley S E 1996 Astrophys. J. 471 331

    [11]

    Nishimura N, Takiwaki T, Thielemann F K 2015 Astrophys. J. 810 109

    [12]

    Fischer T, Whitehouse S C, Mezzacappa A, Thielemann F K, Liebendörfer M 2010 Astron. Astrophys. 517 A80

    [13]

    Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86

    [14]

    Jiang X F, Wu X H, Zhao P W 2021 Astrophys. J. 915 29

    [15]

    Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102

    [16]

    Hao Y W, Niu Y F, Niu Z M 2022 Astrophys. J. 933 3

    [17]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001

    [18]

    Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201

    [19]

    Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012

    [20]

    Xia J G, Li W F, Fang J Y, Niu Z M 2024 Acta Phys. Sin. 73 062301 (in Chinese)

    [21]

    [夏金戈,李伟 峰,方基宇,牛中明 2024 73 062301]

    [22]

    Tian L, Li W F, Fang J Y, Niu Z M 2025 Chin. Phys. C 49 044110

    [23]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470

    [24]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641

    [25]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521

    [26]

    Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502[27] Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819

    [27]

    Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802

    [28]

    Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [29]

    Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302

    [30]

    Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501

    [31]

    Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303(R)

    [32]

    Marketin T, Huther L, Martínez-Pinedo G 2016 Phys. Rev. C 93 025805

    [33]

    Niu Y F, Niu Z M, Colò G, Vigezzi E 2015 Phys. Rev. Lett. 114 142501

    [34]

    Niu Y F, Niu Z M, Colò G, Vigezzi E 2018 Phys. Lett. B 780 325

    [35]

    Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332

    [36]

    Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307

    [37]

    Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103

    [38]

    Zhao B, Zhang S Q 2019 Astrophys. J. 874 5

    [39]

    Sprouse T M, Navarro Perez R, Surman R, Mumpower M R, McLaughlin G C, Schuunck N 2020 Phys. Rev. C 101 055803

    [40]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366

    [41]

    Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131

    [42]

    Rauscher T, Thielemann F K 2000 At. Data. Nucl. Data Tables 75 1

    [43]

    Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103

    [44]

    Fang J Y, Zhang X Y, Shi M, Niu Z M 2025 Eur. Phys. J. A 61 123

    [45]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330

    [46]

    Von Weizsäcker C F 1935 Z. Phys. 96 431

    [47]

    Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82

    [48]

    Kirson M W 2008 Nucl. Phys. A 798 29

    [49]

    Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91[51] Wu Q, Li W F, Niu Z M, Liang H Z, Shi M 2025 Chin. Phys. C 49 114103

    [50]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322

    [51]

    Wang N, Liang Z Y, Li M, Wu X Z 2010 Phys. Rev. C 82 044304

    [52]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215

    [53]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501

    [54]

    Goriely S, Chamel N, Pearson M J 2009 Phys. Rev. Lett 102 152503

    [55]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett 102 242501

    [56]

    Goriely S, Chamel N, Pearson M J 2016 Phys. Rev. C 93 034337

    [57]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785

    [58]

    Peña-Arteaga D, Goriely S, Chamel N 2016 Eur. Phys. J. A 52 320

    [59]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82, 011301(R)

    [60]

    Guo P, Cao X J, Chen K M, Chen Z H, Cheoun M K, Choi Y B, Lam P C, Deng W M, Dong J M, Du P X, Du X K, Duan K D, Fan X H, Gao W, Geng L S, Ha E, He X T, Hu J N, Huang J K, Huang K, Huang Y N, Huang Z D, Hyung K D, Chan H Y, Jiang X F, Kim S, Kim Y, Lee C H, Lee J, Li J, Li M L, Li Z P, Li Z Z, Lian Z J, Liang H Z, Liu L, Lu X, Liu Z R, Meng J, Meng Z Y, Mun M H, Niu Y F, Niu Z M, Pan C, Peng J, Qu X Y, Papakonstantinou P, Shang T S, Shang X L, Shen C W, Shen G F, Sun T T, Sun X X, Wang S B, Wang T Y, Wang Y R, Wang Y Y, Wu J W, Wu L, Wu X H, Xia X W, Xie H H, Yao J M, Ip K Y, Yiu T C, Yu J H, Yu Y Y, Zhang K Y, Zhang S J, Zhang S Q, Zhang W, Zhang X Y, Zhang Y X, Zhang Y, Zhang Y X, Zhang Z H, Zhao Q, Zhao Y C, Zheng R Y, Zhou C, Zhou S G, Zuo L J, DRHBc Mass Table Collaboration 2024 Atomic Data Nucl. Data Tables 158 101661

    [61]

    Gao Z P, Wang Y J, Lv H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32, 109

    [62]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394

    [63]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303

    [64]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311

    [65]

    Mumpower M R, Surman R, Fang D L, Beard M, Möller P, Kawano T, Aprahamian A 2015 Phys. Rev. C 92 035807[68] Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305

    [66]

    Bhagwat A 2014 Phys. Rev. C 90 064306

    [67]

    Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304

    [68]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23

    [69]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003

    [70]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231

    [71]

    Koning A J, Rochman D 2012 Nucl. Data Sheets 113 2841

    [72]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Dretenar D, Meng J 2013 Phys. Lett. B 723 172

    [73]

    Brett S, Bentley I, Paul N, Surman R, Aprahamian A 2012 Eur. Phys. J. A 48 184

    [74]

    Surman R, Beun J, McLaughlin G C, Hix W R 2009 Phys. Rev. C 79 045809

    [75]

    Mumpower M, Surman R, Aprahamian A 2015 J. Phys: Conf. Ser. 599 012031

    [76]

    Mumpower M R, McLaughlin G C, Surman R 2012 Phys. Rev. C 86 035803

    [77]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B 2014 Phys. Rev. C 90 014303

  • [1] CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun. Research on stability and decay properties of superheavy nuclei based on neural network method. Acta Physica Sinica, doi: 10.7498/aps.74.20250720
    [2] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, doi: 10.7498/aps.73.20231957
    [3] Wang De-Xin, Zhang Su-Ya-La-Tu, Jiang Wei, Ren Jie, Wang Jin-Cheng, Tang Jing-Yu, Ruan Xi-Chao, Wang Hong-Wei, Chen Zhi-Qiang, Huang Mei-Rong, Tang Xin, Hu Xin-Rong, Li Xin-Xiang, Liu Long-Xiang, Liu Bing-Yan, Sun Hui, Zhang Yue, Hao Zi-Rui, Song Na, Li Xue, Niu Dan-Dan, Li Guo, Meng Gu-Fu. Neutron capture cross section measurements for natLu with different thickness. Acta Physica Sinica, doi: 10.7498/aps.71.20212051
    [4] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, doi: 10.7498/aps.70.20210742
    [5] Liu Zhao-Bin, Li Kai, Zeng Tian-Hai, Wang Feng, Song Xin-Bing, Shao Bin, Zou Jian. Influence of hydrogen-like nucleus mass on electronic state. Acta Physica Sinica, doi: 10.7498/aps.70.20201754
    [6] Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models. Acta Physica Sinica, doi: 10.7498/aps.70.20201734
    [7] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, doi: 10.7498/aps.68.20190760
    [8] Feng Song, Liu Rong, Lu Xin-Xin, Yang Yi-Wei, Wang Mei, Jiang Li, Qin Jian-Guo. Determination of thorium fission rate by off-line method. Acta Physica Sinica, doi: 10.7498/aps.63.162501
    [9] Zhang Jia-Ming, Xu Xiao-Dong, Sun Bao-Hua. A model for rp-process within the (p,)-(,p) equilibrium approximation and its application. Acta Physica Sinica, doi: 10.7498/aps.62.132501
    [10] Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurement and analysis of neutron capture rate of U-238 in an alternate depleted uranium/polyethylene system. Acta Physica Sinica, doi: 10.7498/aps.61.102801
    [11] Li Zhu, Niu Zhong-Ming, Sun Bao-Hua, Wang Ning, Meng Jie. WLW mass model in nuclear r-process calculations. Acta Physica Sinica, doi: 10.7498/aps.61.072601
    [12] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, doi: 10.7498/aps.61.112601
    [13] Zhang Jie, Wang Shao-Feng. Effect of electron screening on the rapid neutron capture process. Acta Physica Sinica, doi: 10.7498/aps.59.1391
    [14] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ye Fan, Xu Rong-Kun. Effects of secondary neutrons on fast-neutron image quality in thick scintillator. Acta Physica Sinica, doi: 10.7498/aps.58.1316
    [15] Yang Wei, Cai Xiao-Hong, Yu De-Yang. Single electron capture process of ion-atom collisions by means of close-coupling method. Acta Physica Sinica, doi: 10.7498/aps.54.2128
    [16] FU DE-JI, CAI YAN-HUANG, XIA KE-DING. CALCULATION OF NEUTRON CAPTURE CROSS SECTIONS OF Th232 AND U238. Acta Physica Sinica, doi: 10.7498/aps.23.52-2
    [17] CHANG LI-NING, DAI YUAN-BENG. THE RADIATIVE CAPTURE OF μ- MESON BY NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.17.41
    [18] PENG HONG-AN, XIA YU-ZHENG, HUANG SHI-YI, CAO HENG-DAO. MUON CAPTURE IN Be7 NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.16.379
    [19] CHU CHIA-CHEN, CHOU KUANO-CHAO, PENG HONG-AN. MUON CAPTURE IN He3 NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.16.61
    [20] . Acta Physica Sinica, doi: 10.7498/aps.16.111
Metrics
  • Abstract views:  22
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 October 2025
  • /

    返回文章
    返回
    Baidu
    map