-
Nuclear mass, β-decay half-life, and neutron-capture rate are the most important nuclear physics inputs for rapid-neutron capture process (r-process) simulations. Nuclear mass can directly impact the abundance ratio of neighboring isotopes during the (n,γ)-(γ,n) equilibrium stage. On the other hand, nuclear mass influences the predictions of β-decay half-lives and the neutron-capture rates, thus indirectly impacting the r-process simulation. Currently, only about 3000 nuclear masses have been precisely measured in experiments, and many of the nuclear masses involved in r-process simulations can only be predicted by theory models. However, when extrapolating nuclear masses towards the neutron drip line, there are large discrepancies between the predictions of different mass models, which inevitably affects the predictions of β-decay half-lives and neutron-capture rates. In this work, ten mass models are employed to systematically study the impact of nuclear mass uncertainties on β-decay half-lives and neutron-capture rates. The β-decay half-lives and neutron-capture rates are calculated by the β-decay half-life semi-empirical formula and TALYS code, respectively. It has been found that the uncertainties in nuclear mass predictions among different mass models can reach 10 MeV in the neutron-rich region; the differences between the maximum and minimum masses predicted by these models even exceed 30 MeV for some nuclei. For the predictions of β-decay energy Qβ and (n, γ) reaction energy Q(n,γ), there are large deviations mainly around the neutron magic numbers and close to the neutron drip line, with uncertainties about 1 MeV and 2 MeV, respectively. The impact of mass uncertainties on the β-decay half-lives is about 0.6 orders of magnitude for neutron-rich nuclei. The uncertainties of neutron-capture rates increase significantly when extrapolating towards the neutron-rich region. At the temperature of T = 109 K, the average uncertainties of neutron-capture rates range over 2 ∼ 3 orders of magnitude for nuclei near neutron drip line. Taking N = 50, 82, 126, 184 isotones as examples, it is found that the differences between the maximum and minimum neutron-capture rates obtained from various nuclear mass models even exceed 10 orders of magnitude for some nuclei. The Q(n,γ) directly impacts the trend of the neutron-capture rates, and the neutron-capture rates are very sensitive to the uncertainties of Q(n,γ) for neutron-rich nuclei. In addition, the effect of temperature on neutron-capture rates has also been investigated, and it is found that the increase in temperature can reduce the impact of mass uncertainties on the predictions of neutron-capture rates for neutron-rich nuclei. In this work, the β-decay half-lives and neutron-capture rates are calculated based on ten mass tables. Therefore, more self-consistent nuclear physics inputs will be provided for the simulation of the r-process. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00222 (Please use the private access link https://www.scidb.cn/s/iyIZFf to access the dataset during the peer review process).
-
Keywords:
- r-process /
- nuclear mass /
- β-decay half-life /
- neutron-capture rate
-
[1] Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547
[2] Thielemann F K, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martínez-Pinedo G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346
[3] Kajino T, Aoki W, Balantekin A, Diehl R. Famiano M, Mathews G 2019 Prog. Part. Nucl. Phys. 107 109
[4] Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann F K 2021 Rev. Mod. Phys. 93 015002
[5] Pian E, D’Avanzo P, Benetti S, Branchesi M, Brocato E, Campana S, Cappellaro E, Covino S, D’Elia V, Fynbo J P U, Getman F, Ghirlanda G, Ghisellini G, Grado A, Greco G, Hjorth J, Kouveliotou C, Levan A, Limatola L, Malesani D, Mazzali P A, Melandri A, Møller P, Nicastro L, Palazzi E, Piranomonte S, Rossi A, Salafia O S, Selsing J, Stratta G, Tanaka M, Tanvir N R, Tomasella L, Watson D, Yang S, Amati L, Antonelli L A, Ascenzi S, Bernardini M G, Boër M, Bufano F, Bulgarelli A, Capaccioli M, Casella P, Castro-Tirado A J, Chassande-Mottin E, Ciolfi R, Copperwheat C M, Dadina M, De Cesare G, Di Paola A, Fan Y Z, Gendre B, Giuffrida G, Giunta A, Hunt L K, Israel G L, Jin Z P, Kasliwal M M, Klose S, Lisi M, Longo F, Maiorano E, Mapelli M, Masetti N, Nava L, Patricelli B, Perley D, Pescalli A, Piran T, A. Possenti, Pulone L, Razzano M, Salvaterra R, Schipani P, Spera M, Stamerra A, Stella L, Tagliaferri G, Testa V, Troja E, Turatto M, Vergani S D, Vergani D 2017 Nature 551 67[6] Watson D, Hansen C J, Selsing J, Koch A, Malesani D B, Andersen A C, Fynbo J P U, Arcones A, Bauswein A, Covino S, Grado A, Heintz K E, Hunt L, Kouveliotou C, Leloudas G, Levan A J, Mazzali P, Pian Elena 2019 Nature 574 497
[6] Kobayashi C, Karakas A I, Lugaro M 2020 Astrophys. J. 900 179
[7] Lattimer J M, Schramm D N 1974 Astrophys. J. 192 L145
[8] Meyer B S, Mathews G J, Howard W M, Woosley S E, Hoffman R D 1992 Astrophys. J. 399 656
[9] Woosley S E, Wilson J R, Mathews G J, Hoffman R D, Meyer B S 1994 Astrophys. J. 433 229
[10] Qian Y Z, Woosley S E 1996 Astrophys. J. 471 331
[11] Nishimura N, Takiwaki T, Thielemann F K 2015 Astrophys. J. 810 109
[12] Fischer T, Whitehouse S C, Mezzacappa A, Thielemann F K, Liebendörfer M 2010 Astron. Astrophys. 517 A80
[13] Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86
[14] Jiang X F, Wu X H, Zhao P W 2021 Astrophys. J. 915 29
[15] Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102
[16] Hao Y W, Niu Y F, Niu Z M 2022 Astrophys. J. 933 3
[17] Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001
[18] Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201
[19] Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012
[20] Xia J G, Li W F, Fang J Y, Niu Z M 2024 Acta Phys. Sin. 73 062301 (in Chinese)
[21] [夏金戈,李伟 峰,方基宇,牛中明 2024 73 062301]
[22] Tian L, Li W F, Fang J Y, Niu Z M 2025 Chin. Phys. C 49 044110
[23] Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470
[24] Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641
[25] Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521
[26] Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502[27] Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819
[27] Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802
[28] Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803
[29] Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302
[30] Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501
[31] Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303(R)
[32] Marketin T, Huther L, Martínez-Pinedo G 2016 Phys. Rev. C 93 025805
[33] Niu Y F, Niu Z M, Colò G, Vigezzi E 2015 Phys. Rev. Lett. 114 142501
[34] Niu Y F, Niu Z M, Colò G, Vigezzi E 2018 Phys. Lett. B 780 325
[35] Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332
[36] Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307
[37] Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103
[38] Zhao B, Zhang S Q 2019 Astrophys. J. 874 5
[39] Sprouse T M, Navarro Perez R, Surman R, Mumpower M R, McLaughlin G C, Schuunck N 2020 Phys. Rev. C 101 055803
[40] Hauser W, Feshbach H 1952 Phys. Rev. 87 366
[41] Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131
[42] Rauscher T, Thielemann F K 2000 At. Data. Nucl. Data Tables 75 1
[43] Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103
[44] Fang J Y, Zhang X Y, Shi M, Niu Z M 2025 Eur. Phys. J. A 61 123
[45] Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330
[46] Von Weizsäcker C F 1935 Z. Phys. 96 431
[47] Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82
[48] Kirson M W 2008 Nucl. Phys. A 798 29
[49] Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91[51] Wu Q, Li W F, Niu Z M, Liang H Z, Shi M 2025 Chin. Phys. C 49 114103
[50] Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322
[51] Wang N, Liang Z Y, Li M, Wu X Z 2010 Phys. Rev. C 82 044304
[52] Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215
[53] Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501
[54] Goriely S, Chamel N, Pearson M J 2009 Phys. Rev. Lett 102 152503
[55] Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett 102 242501
[56] Goriely S, Chamel N, Pearson M J 2016 Phys. Rev. C 93 034337
[57] Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785
[58] Peña-Arteaga D, Goriely S, Chamel N 2016 Eur. Phys. J. A 52 320
[59] Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82, 011301(R)
[60] Guo P, Cao X J, Chen K M, Chen Z H, Cheoun M K, Choi Y B, Lam P C, Deng W M, Dong J M, Du P X, Du X K, Duan K D, Fan X H, Gao W, Geng L S, Ha E, He X T, Hu J N, Huang J K, Huang K, Huang Y N, Huang Z D, Hyung K D, Chan H Y, Jiang X F, Kim S, Kim Y, Lee C H, Lee J, Li J, Li M L, Li Z P, Li Z Z, Lian Z J, Liang H Z, Liu L, Lu X, Liu Z R, Meng J, Meng Z Y, Mun M H, Niu Y F, Niu Z M, Pan C, Peng J, Qu X Y, Papakonstantinou P, Shang T S, Shang X L, Shen C W, Shen G F, Sun T T, Sun X X, Wang S B, Wang T Y, Wang Y R, Wang Y Y, Wu J W, Wu L, Wu X H, Xia X W, Xie H H, Yao J M, Ip K Y, Yiu T C, Yu J H, Yu Y Y, Zhang K Y, Zhang S J, Zhang S Q, Zhang W, Zhang X Y, Zhang Y X, Zhang Y, Zhang Y X, Zhang Z H, Zhao Q, Zhao Y C, Zheng R Y, Zhou C, Zhou S G, Zuo L J, DRHBc Mass Table Collaboration 2024 Atomic Data Nucl. Data Tables 158 101661
[61] Gao Z P, Wang Y J, Lv H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32, 109
[62] Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394
[63] Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303
[64] Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311
[65] Mumpower M R, Surman R, Fang D L, Beard M, Möller P, Kawano T, Aprahamian A 2015 Phys. Rev. C 92 035807[68] Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305
[66] Bhagwat A 2014 Phys. Rev. C 90 064306
[67] Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304
[68] Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23
[69] Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003
[70] Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231
[71] Koning A J, Rochman D 2012 Nucl. Data Sheets 113 2841
[72] Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Dretenar D, Meng J 2013 Phys. Lett. B 723 172
[73] Brett S, Bentley I, Paul N, Surman R, Aprahamian A 2012 Eur. Phys. J. A 48 184
[74] Surman R, Beun J, McLaughlin G C, Hix W R 2009 Phys. Rev. C 79 045809
[75] Mumpower M, Surman R, Aprahamian A 2015 J. Phys: Conf. Ser. 599 012031
[76] Mumpower M R, McLaughlin G C, Surman R 2012 Phys. Rev. C 86 035803
[77] Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B 2014 Phys. Rev. C 90 014303
Metrics
- Abstract views: 22
- PDF Downloads: 0
- Cited By: 0