Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates

WU Qing NIU Zhongming LIANG Haozhao

Citation:

Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates

WU Qing, NIU Zhongming, LIANG Haozhao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nuclear mass, β-decay half-life, and neutron-capture rate are the most important nuclear physics inputs for rapid-neutron capture process (r-process) simulations. Nuclear mass can directly impact the abundance ratio of neighboring isotopes during the (n, γ)-(γ, n) equilibrium stage. On the other hand, nuclear mass influences the predictions of β-decay half-lives and the neutron-capture rates, thus indirectly impacting the r-process simulation. Currently, only about 3000 nuclear masses have been precisely measured in experiments, and many of the nuclear masses involved in r-process simulations can only be predicted by theory models. However, when extrapolating nuclear masses towards the neutron drip line, there are large discrepancies between the predictions of different mass models, which inevitably affects the predictions of β-decay half-lives and neutron-capture rates. In this work, ten mass models are employed to systematically study the impact of nuclear mass uncertainties on β-decay half-lives and neutron-capture rates. The β-decay half-lives and neutron-capture rates are calculated by the β-decay half-life semi-empirical formula and TALYS code, respectively. It has been found that the uncertainties in nuclear mass predictions among different mass models can reach 10 MeV in the neutron-rich region; the differences between the maximum and minimum masses predicted by these models even exceed 30 MeV for some nuclei. For the predictions of β-decay energy $Q_{\beta}$ and $(\rm n,\gamma)$ reaction energy $Q_{(\rm n,\gamma)}$, there are large deviations mainly around the neutron magic numbers and close to the neutron drip line, with uncertainties about 1 MeV and 2 MeV, respectively. The impact of mass uncertainties on the β-decay half-lives is about 0.6 orders of magnitude for neutron-rich nuclei. The uncertainties of neutron-capture rates increase significantly when extrapolating towards the neutron-rich region. At the temperature of $T=10^9$ K, the average uncertainties of neutron-capture rates range over 2~3 orders of magnitude for nuclei near neutron drip line. Taking $N=50,\;82,\;126,\;184$ isotones as examples, it is found that the differences between the maximum and minimum neutron-capture rates obtained from various nuclear mass models even exceed 10 orders of magnitude for some nuclei. The $Q_{(\rm n,\gamma)}$ directly impacts the trend of the neutron-capture rates, and the neutron-capture rates are very sensitive to the uncertainties of $Q_{(\rm n,\gamma)}$ for neutron-rich nuclei. In addition, the effect of temperature on neutron-capture rates has also been investigated, and it is found that the increase in temperature can reduce the impact of mass uncertainties on the predictions of neutron-capture rates for neutron-rich nuclei. In this work, the β-decay half-lives and neutron-capture rates are calculated based on ten mass tables. Therefore, more self-consistent nuclear physics inputs will be provided for the simulation of the r-process. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00222.
  • 图 1  各原子核质量模型与FRDM2012模型预言的Ni、Sn和Pb同位素质量之差. 黑色实心圆表示核质量实验值与FRDM2012预测值的差值

    Figure 1.  The differences between the mass predictions of various nuclear mass models and FRDM2012 model for Ni, Sn, and Pb isotopes, solid black circles denote the differences between experimental masses and the predictions of FRDM2012.

    图 2  核质量 Mβ衰变能$ Q_{\beta} $以及(n, γ)反应能$ Q_{(\rm n, \gamma)} $的不确定性. 灰色实线表示相应实验值范围的边界, 图中显示了参考文献[75]的r-过程路径以供参考, 由黑色实线表示, 该路径是基于经典r-过程模型预测的.

    Figure 2.  Uncertainties of nuclear mass M, β-decay energy $ Q_{\beta} $, and the reaction energy of (n, γ) $ Q_{(\rm n, \gamma)} $. The grey solid lines denote the boundaries of the corresponding experimental data ranges. The figure also shows the r-process path taken from Ref. [75] for guiding eyes, represented by the black solid lines, which is predicted based on the classical r-process model.

    图 3  基于半经验公式(1)和各模型的核质量预测计算的$ N=50, \; 82, \; 126 $同中子素链的β衰变半衰期, 并与实验半衰期[18]比较

    Figure 3.  Nuclear β-decay half-lives of $ N=50, \; 82, \; 126 $ isotones predicted by the formula (1) based on various nuclear mass models, and their comparison with experimental half-lives[18].

    图 4  通过各种质量模型得到的理论β衰变半衰期对数的最大值和最小值的差异. 实验半衰期原子核的边界由灰色实线表示. 图中显示了参考文献[75]的r-过程路径以供参考, 由黑色实线表示

    Figure 4.  The differences between the maximum and minimum values of the logarithm of theoretical β-decay half-lives obtained by various nuclear mass models. The boundary lines of nuclei with known half-lives in NUBASE2020 are shown by the grey solid lines. The figure also shows the r-process path taken from Ref. [75] for guiding eyes, represented by the black solid lines

    图 5  在温度$ T_9=1 $时, 各质量模型预测的$ N=50, \; 82, \; 126, \; 184 $同中子素链的中子俘获率, 阴影区域表示$ Q_{(\rm n, \gamma)} $实验未知区域

    Figure 5.  Predictions of radiative neutron-capture rate for $ N=50, \; 82, \; 126, $ and $ 184 $ isotones at $ T_9=1 $ with different mass models. The shaded region denotes the $ Q_{(\rm n, \gamma)} $ experimental unknown region.

    图 6  各质量模型预测的$ N=126, \; 184 $同中子素链的$ (\rm n, \gamma) $反应能$ Q_{(\rm n, \gamma)} $

    Figure 6.  $ (\rm n, \gamma) $ reaction energies $ Q_{(\rm n, \gamma)} $ of $ N=126, \; 184 $ isotones predicted by various nuclear mass models.

    图 7  对于各质量模型, 133Cd、133Sn、133Sb以及197Hf中子俘获率随温度的变化

    Figure 7.  Radiative neutron-capture rates of 133Cd, 133Sn, 133Sb, and 197Hf as a function of temperature for various nuclear mass models.

    图 8  在温度$ T_9=1, 10 $时, $ \sigma_{\rm rms}(\log_{10}(N_A \langle\sigma v \rangle )) $随与稳定线距离的分布

    Figure 8.  Distribution of $ \sigma_{\rm rms}(\log_{10}(N_A \langle \sigma v \rangle )) $ with respect to the distance from the β-stability line at $ T_9=1 $ and $ 10 $.

    表 1  衰变半衰期半经验公式参数

    Table 1.  Parameters of the semi-empirical formula of β-decay half-lives

    $ a_{1} $ $ a_{2} $ $ a_{3} $ $ a_{4} $ $ a_{5} $ $ a_{6} $ $ a_{7} $ $ a_{8} $
    15.870586.341700.456833.544785.245963.885351.082750.71482
    DownLoad: CSV

    表 2  TALYS输入文件中关键字及其相应的值

    Table 2.  Keywords and their corresponding values in the TALYS input file

    关键字 projectile element mass ejectiles astro expmass massdir
    n Th 292 g y n bml
    DownLoad: CSV
    Baidu
  • [1]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [2]

    Thielemann F K, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martínez-Pinedo G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346Google Scholar

    [3]

    Kajino T, Aoki W, Balantekin A, Diehl R. Famiano M, Mathews G 2019 Prog. Part. Nucl. Phys. 107 109Google Scholar

    [4]

    Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann F K 2021 Rev. Mod. Phys. 93 015002Google Scholar

    [5]

    Pian E, D'Avanzo P, Benetti S, Branchesi M, Brocato E, Campana S, Cappellaro E, Covino S, D'Elia V, Fynbo J P U, Getman F, Ghirlanda G, Ghisellini G, Grado A, Greco G, Hjorth J, Kouveliotou C, Levan A, Limatola L, Malesani D, Mazzali P A, Melandri A, M\o ller P, Nicastro L, Palazzi E, Piranomonte S, Rossi A, Salafia O S, Selsing J, Stratta G, Tanaka M, Tanvir N R, Tomasella L, Watson D, Yang S, Amati L, Antonelli L A, Ascenzi S, Bernardini M G, Boër M, Bufano F, Bulgarelli A, Capaccioli M, Casella P, Castro-Tirado A J, Chassande-Mottin E, Ciolfi R, Copperwheat C M, Dadina M, De Cesare G, Di Paola A, Fan Y Z, Gendre B, Giuffrida G, Giunta A, Hunt L K, Israel G L, Jin Z P, Kasliwal M M, Klose S, Lisi M, Longo F, Maiorano E, Mapelli M, Masetti N, Nava L, Patricelli B, Perley D, Pescalli A, Piran T, A. Possenti, Pulone L, Razzano M, Salvaterra R, Schipani P, Spera M, Stamerra A, Stella L, Tagliaferri G, Testa V, Troja E, Turatto M, Vergani S D, Vergani D 2017 Nature 551 67Google Scholar

    [6]

    Watson D, Hansen C J, Selsing J, Koch A, Malesani D B, Andersen A C, Fynbo J P U, Arcones A, Bauswein A, Covino S, Grado A, Heintz K E, Hunt L, Kouveliotou C, Leloudas G, Levan A J, Mazzali P, Pian Elena 2019 Nature 574 497Google Scholar

    [7]

    Kobayashi C, Karakas A I, Lugaro M 2020 Astrophys. J. 900 179Google Scholar

    [8]

    Lattimer J M, Schramm D N 1974 Astrophys. J. 19 2

    [9]

    Meyer B S, Mathews G J, Howard W M, Woosley S E, Hoffman R D 1992 Astrophys. J. 399 656Google Scholar

    [10]

    Woosley S E, Wilson J R, Mathews G J, Hoffman R D, Meyer B S 1994 Astrophys. J. 433 229Google Scholar

    [11]

    Qian Y Z, Woosley S E 1996 Astrophys. J. 471 331Google Scholar

    [12]

    Nishimura N, Takiwaki T, Thielemann F K 2015 Astrophys. J. 810 109Google Scholar

    [13]

    Fischer T, Whitehouse S C, Mezzacappa A, Thielemann F K, Liebendörfer M 2010 Astron. Astrophys. 517 A80Google Scholar

    [14]

    Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86Google Scholar

    [15]

    Jiang X F, Wu X H, Zhao P W 2021 Astrophys. J. 915 29Google Scholar

    [16]

    Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102Google Scholar

    [17]

    Hao Y W, Niu Y F, Niu Z M 2022 Astrophys. J. 933 3Google Scholar

    [18]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [19]

    Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201Google Scholar

    [20]

    Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012Google Scholar

    [21]

    夏金戈, 李伟峰, 方基宇, 牛中明 2024 73 062301Google Scholar

    Xia J G, Li W F, Fang J Y, Niu Z M 2024 Acta Phys. Sin. 73 062301Google Scholar

    [22]

    Tian L, Li W F, Fang J Y, Niu Z M 2025 Chin. Phys. C 49 044110Google Scholar

    [23]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470Google Scholar

    [24]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641Google Scholar

    [25]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521Google Scholar

    [26]

    Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502Google Scholar

    [27]

    Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819Google Scholar

    [28]

    Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802

    [29]

    Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [30]

    Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302

    [31]

    Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501Google Scholar

    [32]

    Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303(RGoogle Scholar

    [33]

    Marketin T, Huther L, Martínez-Pinedo G 2016 Phys. Rev. C 93 025805Google Scholar

    [34]

    Niu Y F, Niu Z M, Colò G, Vigezzi E 2015 Phys. Rev. Lett. 114 142501Google Scholar

    [35]

    Niu Y F, Niu Z M, Colò G, Vigezzi E 2018 Phys. Lett. B 780 325Google Scholar

    [36]

    Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332Google Scholar

    [37]

    Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307

    [38]

    Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103Google Scholar

    [39]

    Zhao B, Zhang S Q 2019 Astrophys. J. 874 5Google Scholar

    [40]

    Sprouse T M, Navarro Perez R, Surman R, Mumpower M R, McLaughlin G C, Schuunck N 2020 Phys. Rev. C 101 055803Google Scholar

    [41]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366Google Scholar

    [42]

    Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131Google Scholar

    [43]

    Rauscher T, Thielemann F K 2000 At. Data. Nucl. Data Tables 75 1Google Scholar

    [44]

    Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103Google Scholar

    [45]

    Fang J Y, Zhang X Y, Shi M, Niu Z M 2025 Eur. Phys. J. A 61 123Google Scholar

    [46]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330Google Scholar

    [47]

    Von Weizsäcker C F 1935 Z. Phys. 96 431Google Scholar

    [48]

    Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82Google Scholar

    [49]

    Kirson M W 2008 Nucl. Phys. A 798 29Google Scholar

    [50]

    Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91Google Scholar

    [51]

    Wu Q, Li W F, Niu Z M, Liang H Z, Shi M 2025 Chin. Phys. C 49 114103Google Scholar

    [52]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322Google Scholar

    [53]

    Wang N, Liang Z Y, Li M, Wu X Z 2010 Phys. Rev. C 82 044304

    [54]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [55]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [56]

    Goriely S, Chamel N, Pearson M J 2009 Phys. Rev. Lett 102 152503Google Scholar

    [57]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett 102 242501Google Scholar

    [58]

    Goriely S, Chamel N, Pearson M J 2016 Phys. Rev. C 93 034337Google Scholar

    [59]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [60]

    Peña-Arteaga D, Goriely S, Chamel N 2016 Eur. Phys. J. A 52 320Google Scholar

    [61]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [62]

    Guo P, Cao X J, Chen K M, Chen Z H, Cheoun M K, Choi Y B, Lam P C, Deng W M, Dong J M, Du P X, Du X K, Duan K D, Fan X H, Gao W, Geng L S, Ha E, He X T, Hu J N, Huang J K, Huang K, Huang Y N, Huang Z D, Hyung K D, Chan H Y, Jiang X F, Kim S, Kim Y, Lee C H, Lee J, Li J, Li M L, Li Z P, Li Z Z, Lian Z J, Liang H Z, Liu L, Lu X, Liu Z R, Meng J, Meng Z Y, Mun M H, Niu Y F, Niu Z M, Pan C, Peng J, Qu X Y, Papakonstantinou P, Shang T S, Shang X L, Shen C W, Shen G F, Sun T T, Sun X X, Wang S B, Wang T Y, Wang Y R, Wang Y Y, Wu J W, Wu L, Wu X H, Xia X W, Xie H H, Yao J M, Ip K Y, Yiu T C, Yu J H, Yu Y Y, Zhang K Y, Zhang S J, Zhang S Q, Zhang W, Zhang X Y, Zhang Y X, Zhang Y, Zhang Y X, Zhang Z H, Zhao Q, Zhao Y C, Zheng R Y, Zhou C, Zhou S G, Zuo L J, DRHBc Mass Table Collaboration 2024 Atomic Data Nucl. Data Tables 158 101661Google Scholar

    [63]

    Gao Z P, Wang Y J, Lv H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109Google Scholar

    [64]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394Google Scholar

    [65]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303Google Scholar

    [66]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311Google Scholar

    [67]

    Mumpower M R, Surman R, Fang D L, Beard M, Möller P, Kawano T, Aprahamian A 2015 Phys. Rev. C 92 035807Google Scholar

    [68]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [69]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [70]

    Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304

    [71]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23Google Scholar

    [72]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [73]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [74]

    Koning A J, Rochman D 2012 Nucl. Data Sheets 113 2841Google Scholar

    [75]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Dretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [76]

    Brett S, Bentley I, Paul N, Surman R, Aprahamian A 2012 Eur. Phys. J. A 48 184Google Scholar

    [77]

    Surman R, Beun J, McLaughlin G C, Hix W R 2009 Phys. Rev. C 79 045809Google Scholar

    [78]

    Mumpower M, Surman R, Aprahamian A 2015 J. Phys: Conf. Ser. 599 012031Google Scholar

    [79]

    Mumpower M R, McLaughlin G C, Surman R 2012 Phys. Rev. C 86 035803Google Scholar

    [80]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B 2014 Phys. Rev. C 90 014303

  • [1] LIU Yaqi, LI Zhilong, WANG Yongjia, LI Qingfeng, MA Chunwang. Further exploration of the machine-learning-based nuclear mass table. Acta Physica Sinica, doi: 10.7498/aps.75.20251526
    [2] WANG Dongdong, Li Peng, WANG Zhiheng. Nuclear mass predictions through neural networks incorporating neutron and proton separation energy constraints. Acta Physica Sinica, doi: 10.7498/aps.75.20251315
    [3] CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun. Research on stability and decay properties of superheavy nuclei based on neural network method. Acta Physica Sinica, doi: 10.7498/aps.74.20250720
    [4] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, doi: 10.7498/aps.73.20231957
    [5] Wang De-Xin, Zhang Su-Ya-La-Tu, Jiang Wei, Ren Jie, Wang Jin-Cheng, Tang Jing-Yu, Ruan Xi-Chao, Wang Hong-Wei, Chen Zhi-Qiang, Huang Mei-Rong, Tang Xin, Hu Xin-Rong, Li Xin-Xiang, Liu Long-Xiang, Liu Bing-Yan, Sun Hui, Zhang Yue, Hao Zi-Rui, Song Na, Li Xue, Niu Dan-Dan, Li Guo, Meng Gu-Fu. Neutron capture cross section measurements for natLu with different thickness. Acta Physica Sinica, doi: 10.7498/aps.71.20212051
    [6] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, doi: 10.7498/aps.70.20210742
    [7] Liu Zhao-Bin, Li Kai, Zeng Tian-Hai, Wang Feng, Song Xin-Bing, Shao Bin, Zou Jian. Influence of hydrogen-like nucleus mass on electronic state. Acta Physica Sinica, doi: 10.7498/aps.70.20201754
    [8] Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models. Acta Physica Sinica, doi: 10.7498/aps.70.20201734
    [9] Feng Song, Liu Rong, Lu Xin-Xin, Yang Yi-Wei, Wang Mei, Jiang Li, Qin Jian-Guo. Determination of thorium fission rate by off-line method. Acta Physica Sinica, doi: 10.7498/aps.63.162501
    [10] Zhang Jia-Ming, Xu Xiao-Dong, Sun Bao-Hua. A model for rp-process within the (p,)-(,p) equilibrium approximation and its application. Acta Physica Sinica, doi: 10.7498/aps.62.132501
    [11] Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurement and analysis of neutron capture rate of U-238 in an alternate depleted uranium/polyethylene system. Acta Physica Sinica, doi: 10.7498/aps.61.102801
    [12] Li Zhu, Niu Zhong-Ming, Sun Bao-Hua, Wang Ning, Meng Jie. WLW mass model in nuclear r-process calculations. Acta Physica Sinica, doi: 10.7498/aps.61.072601
    [13] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, doi: 10.7498/aps.61.112601
    [14] Zhang Jie, Wang Shao-Feng. Effect of electron screening on the rapid neutron capture process. Acta Physica Sinica, doi: 10.7498/aps.59.1391
    [15] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ye Fan, Xu Rong-Kun. Effects of secondary neutrons on fast-neutron image quality in thick scintillator. Acta Physica Sinica, doi: 10.7498/aps.58.1316
    [16] Yang Wei, Cai Xiao-Hong, Yu De-Yang. Single electron capture process of ion-atom collisions by means of close-coupling method. Acta Physica Sinica, doi: 10.7498/aps.54.2128
    [17] CHANG LI-NING, DAI YUAN-BENG. THE RADIATIVE CAPTURE OF μ- MESON BY NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.17.41
    [18] PENG HONG-AN, XIA YU-ZHENG, HUANG SHI-YI, CAO HENG-DAO. MUON CAPTURE IN Be7 NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.16.379
    [19] CHU CHIA-CHEN, CHOU KUANO-CHAO, PENG HONG-AN. MUON CAPTURE IN He3 NUCLEUS. Acta Physica Sinica, doi: 10.7498/aps.16.61
    [20] . Acta Physica Sinica, doi: 10.7498/aps.16.111
Metrics
  • Abstract views:  615
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2025
  • Accepted Date:  30 September 2025
  • Available Online:  17 October 2025
  • /

    返回文章
    返回
    Baidu
    map