Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nuclear mass predictions through neural networks incorporating neutron and proton separation energy constraints

WANG Dongdong Li Peng WANG Zhiheng

Citation:

Nuclear mass predictions through neural networks incorporating neutron and proton separation energy constraints

WANG Dongdong, Li Peng, WANG Zhiheng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nuclear masses are fundamental observables that reflect nuclear structure and stability, playing a key role in nuclear physics and astrophysical processes. Most existing neural network studies focus on predicting either binding energies or neutron/proton separation energies individually, with limited attention to the physical correlations between these observables. Based on the relativistic point-coupling model PCF-PK1, a physics-informed artificial neural network (ANN) was developed to systematically predict nuclear binding energies along with single- and double-neutron/proton separation energies, while preserving the physical self-consistency of the predictions. To assess the impact of incorporating separation-energy constraints, networks were trained with varying loss function weight combinations, enabling a comparison between networks without separation-energy constraints (e.g., ANN1) and those including such constraints (e.g., ANN3).The neural network significantly improves the overall prediction accuracy of binding energies compared with the PCF-PK1 model. Without separation-energy constraints, ANN1 already achieves high precision for binding energies (RMSE $\approx$ 0.147 MeV) and separation energies (RMSE $\approx$ 0.158–0.185 MeV). Incorporating separation-energy constraints in ANN3 results in a slight improvement in overall prediction accuracy. The binding energy predictions improve by approximately 4.6%, while the separation energy predictions increase by 8.9–12.0%. The improvement is particularly noticeable for nuclei where the deviations of ANN1 predictions from experimental values exceed 0.2 MeV. Supporting datasets are publicly accessible at the Science Data Bank (https://doi.org/10.57760/sciencedb.j00213.00239).
  • 图 1  引入分离能约束的多层前馈神经网络结构示意图

    Figure 1.  Diagram of the feedforward neural network with separation energy constraints.

    图 2  训练过程中训练集(红色)与验证集(蓝色)均方根偏差随训练步数的变化示意. 当验证集偏差达到最小值时, 模型参数被保存

    Figure 2.  Root-mean-square deviations of training (red) and validation (blue) sets over epochs; parameters at minimum validation deviation are saved.

    图 3  ANN1、ANN2、ANN3、ANN4以及PCF-PK1模型对原子核E、$ S_{\mathrm{n}} $、$ S_{\mathrm{2 n}} $、$ S_{\mathrm{p}} $和$ S_{\mathrm{2 p}} $的预测值与AME2020实验值均方根偏差的对比

    Figure 3.  Comparison of RMSE between ANN1, ANN2, ANN3, ANN4, and PCF-PK1 predictions and AME2020 experimental values for E, $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $, $ S_{\mathrm{p}} $, and $ S_{\mathrm{2 p}} $.

    图 4  ANN1和ANN3预测值相对于实验值的偏差随核质量数的变化, 包括结合能E(a, f); 单、双中子分离能$ S_\mathrm{n} $(b, g)、$ S_\mathrm{2 n} $(c, h) 以及单、双质子分离能$ S_\mathrm{p} $(d, i)、$ S_\mathrm{2 p} $(e, j). 其中(a—e)为ANN1预测结果, (f—j)为ANN3预测结果, 阴影区域对应结合能预测值与实验值偏差的$ \pm $0.1 MeV范围

    Figure 4.  Deviations of ANN1 and ANN3 predictions from experimental values as a function of nuclear mass number, including binding energy E(a, f), single- and double-neutron separation energies $ S_\mathrm{n} $(b, g) and $ S_\mathrm{2 n} $(c, h), and single- and double-proton separation energies $ S_\mathrm{p} $(d, i) and $ S_\mathrm{2 p} $(e, j). Panels (a–e) show ANN1 predictions, and panels (f–j) show ANN3 predictions. The shaded areas indicate $ \pm $0.1 MeV deviations of binding energies.

    图 5  ANN1(红色实线)、ANN2(蓝色虚线)、ANN3(绿色点线)和ANN3_ZNP(橙色点划线)对Ca($ Z=20 $)及Pb($ Z=82 $)同位素链结合能E(a, f)、单中子分离能$ S_{\mathrm{n}} $(b, g)、双中子分离能$ S_{\mathrm{2 n}} $(c, h)、单质子分离能$ S_{\mathrm{p}} $(d, i)以及双质子分离能$ S_{\mathrm{2 p}} $(e, j)的预测值与实验值偏差. 图中深浅不同的阴影分别对应预测值与实验值偏差在$ \pm $0.1 MeV和$ \pm $0.2 MeV的区间

    Figure 5.  Deviations between the predictions and experimental values of the binding energy E(a, f), single- and double-neutron separation energies $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $(b, g, c, h), single- and double-proton separation energies $ S_{\mathrm{p}} $, $ S_{\mathrm{2 p}} $(d, i, e, j), obtained with ANN1 (red solid line), ANN2 (blue dashed line), ANN3 (green dotted line), and ANN3_ZNP (orange dash-dot line) for the Ca($ Z=20 $) and Pb($ Z=82 $) isotopic chains. Dark and light shaded areas represent deviations from experimental values of $ \pm $0.1 MeV and $ \pm $0.2 MeV, respectively.

    图 6  图4, ANN1(红色实线)、ANN2(蓝色虚线)、ANN3(绿色点线)和ANN3_ZNP(橙色点划线)对$ N=28 $及$ N=126 $同中子素链结合能E(a, f)、单中子分离能$ S_{\mathrm{n}} $(b, g)、双中子分离能$ S_{\mathrm{2 n}} $(c, h)、单质子分离能$ S_{\mathrm{p}} $(d, i)以及双质子分离能$ S_{\mathrm{2 p}} $(e, j)的预测值与实验值偏差. 图中深浅不同的阴影分别对应预测值与实验值偏差在$ \pm $0.1 MeV和$ \pm $0.2 MeV的区间

    Figure 6.  Similar to Fig. 4. Deviations between the predictions and experimental values of the binding energy E(a, f), single- and double-neutron separation energies $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $(b, g, c, h), single- and double-proton separation energies $ S_{\mathrm{p}} $, $ S_{\mathrm{2 p}} $(d, i, e, j), obtained with ANN1 (red solid line), ANN2 (blue dashed line), ANN3 (green dotted line), and ANN3_ZNP (orange dash-dot line) for the N = 28 and $ N = 126 $ >$ Z=82 $) isotonic chains. Dark and light shaded areas represent deviations from experimental values of $ \pm $0.1 MeV and $ \pm $0.2 MeV, respectively.

    图 7  ANN3对整个核素图上原子核结合能E的预测值与实验值的偏差分布

    Figure 7.  Distribution of prediction residuals of ANN3 with respect to experimental values on the nuclear chart for the binding energy E.

    图 8  ANN3对整个核素图上原子核单/双中子分离能$ S_\mathrm{n} $(a), $ S_\mathrm{2 n} $(b)以及单/双质子分离能$ S_\mathrm{p} $(c), $ S_\mathrm{2 p} $(d)的预测值与实验值的偏差分布

    Figure 8.  Distribution of prediction residuals of ANN3 with respect to experimental values on the nuclear chart for the one- and two-neutron separation energies $ S_\mathrm{n} $ (a) and $ S_\mathrm{2 n} $ (b), as well as one- and two-proton separation energies $ S_\mathrm{p} $ (c) and $ S_\mathrm{2 p} $ (d).

    Baidu
  • [1]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021Google Scholar

    [2]

    Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121Google Scholar

    [3]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [4]

    Bethe H A 1939 Phys. Rev. 55 434Google Scholar

    [5]

    Huang W J, Wang M, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030002Google Scholar

    [6]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [7]

    Xia X W, LiM Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121 1

    [8]

    Bethe H A, Bacher R F 1936 Nucl. Phys. 8 82

    [9]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [10]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys 113 785Google Scholar

    [11]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China Phys. Mech. Astron. 55 2414Google Scholar

    [12]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [13]

    Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [14]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [15]

    Neufcourt L, Cao Y C, Nazarewicz W, Viens F 2018 Phys. Rev. C 98 034318Google Scholar

    [16]

    Otsuka T, Suzuki T, Fujimoto R, Grawe H, Akaishi Y 2005 Phys. Rev. Lett. 95 232502Google Scholar

    [17]

    Sorlin O, Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602Google Scholar

    [18]

    Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar

    [19]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109Google Scholar

    [20]

    Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48Google Scholar

    [21]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394Google Scholar

    [22]

    Mumpower M R, Sprouse T M, Lovell A E, Mohan A T 2022 Phys. Rev. C 106 L021301

    [23]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48Google Scholar

    [24]

    Wu X H, Guo L H, Zhao P W 2021 Phys. Lett. B 819 136387Google Scholar

    [25]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303Google Scholar

    [26]

    Lu Y H, Shang T S, Du P X, Li J, Liang H Z, Niu Z M 2025 Phys. Rev. C 111 014325Google Scholar

    [27]

    陈存宇, 陈爱喜, 戚晓秋, 王韩奎 2025 74 012101Google Scholar

    Chen C Y, Chen A X, Qi X Q, Wang H K 2025 Acta Phys. Sin. 74 012101Google Scholar

    [28]

    陶世杰, 张力菲, 张庆一, 刘健, 许昌 2022 中国科学:物理学 力学 天文学 52 252009

    Tao S J, Zhang L F, Zhang Q Y, Liu J, Xu C 2022 Sci. China Phys. Mech. Astron. 52 252009

    [29]

    Li Z L, Wang Y J, Li Q F, Lv B F 2025 Phys. Rev. C 112 014312

    [30]

    Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332Google Scholar

    [31]

    Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307

    [32]

    李鹏, 白景虎, 牛中明, 牛一斐 2022 中国科学:物理学 力学 天文学 52 252006Google Scholar

    Li P, Bai J H, Niu Z M, Niu Y F 2022 Sci. China Phys. Mech. Astron. 52 252006Google Scholar

    [33]

    魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽 2025 74 182901Google Scholar

    Wei K W, Shang T S, Tian R H, Yang D, Li C J, Chen J, Li J, Huang X L, Zhu J L 2025 Acta Phys. Sin. 74 182901Google Scholar

    [34]

    Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103Google Scholar

    [35]

    Li P, Niu Y F, Niu Z M 2025 Nucl. Sci. Tech. 36 50Google Scholar

    [36]

    Jin Z S, Yan M S, Zhou H, Cheng A, Ren Z Z, Liu J 2023 Phys. Rev. C 108 014326Google Scholar

    [37]

    Liu J, Jin Z S, Ren Z Z 2025 Phys. Rev. C 112 024309

    [38]

    Ma N N, Zhao T L, Wang W X, Zhang H F 2023 Phys. Rev. C 107 014310

    [39]

    陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301Google Scholar

    Chen H J, Sheng H W, Huang W H, Wu L Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301Google Scholar

    [40]

    Wang Z A, Pei J C, Liu Y, Qiang Y 2019 Phys. Rev. Lett. 123 122501Google Scholar

    [41]

    Qiao C Y, Pei J C, Wang Z A, Qiang Y, Chen Y J 2021 Phys. Rev. C 103 034621Google Scholar

    [42]

    Zhao Q, Ren Z X, Zhao P W, Meng J 2022 Phys. Rev. C 106 034315Google Scholar

    [43]

    Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86Google Scholar

  • [1] WU Qing, NIU Zhongming, LIANG Haozhao. Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates. Acta Physica Sinica, doi: 10.7498/aps.75.20251195
    [2] LIU Yaqi, LI Zhilong, WANG Yongjia, LI Qingfeng, MA Chunwang. Further exploration of the machine-learning-based nuclear mass table. Acta Physica Sinica, doi: 10.7498/aps.75.20251526
    [3] WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali. Average energy data of β decay nuclei based on neural networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250655
    [4] TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zhe. Rapid analysis model and extrapolation method of neural network in spectral diagnostic. Acta Physica Sinica, doi: 10.7498/aps.74.20241739
    [5] CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun. Research on stability and decay properties of superheavy nuclei based on neural network method. Acta Physica Sinica, doi: 10.7498/aps.74.20250720
    [6] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, doi: 10.7498/aps.73.20231661
    [7] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220670
    [8] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.70.20201557
    [9] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, doi: 10.7498/aps.68.20190643
    [10] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240050
    [11] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, doi: 10.7498/aps.64.110503
    [12] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, doi: 10.7498/aps.63.120506
    [13] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, doi: 10.7498/aps.62.040301
    [14] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, doi: 10.7498/aps.60.020512
    [15] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, doi: 10.7498/aps.57.3996
    [16] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  174
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2025
  • Accepted Date:  04 November 2025
  • Available Online:  06 December 2025
  • /

    返回文章
    返回
    Baidu
    map