Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An RF negative hydrogen ion source for neutral beam injection

XING Siyu GAO Fei WANG Younian

Citation:

An RF negative hydrogen ion source for neutral beam injection

XING Siyu, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In neutral beam injection (NBI), which is a primary auxiliary heating method for tokamak plasmas, the negative hydrogen ion source (NHIS) functions as a critical front-end component governing neutral beam quality. The performance of NHIS remains a key challenge. This work presents a three-dimensional (3D) fluid model, which is developed for a double-driver NHIS to simulate and optimize surface-generated negative hydrogen ion density. A comparison of plasma parameters between the NHIS with Cs and without Cs shows that surface generation yields negative ion density one order of magnitude higher than volume generation. However, the presence of the magnetic filter field induces asymmetry in negative ion density within the extraction region. To improve this asymmetry, two approaches are proposed: (1) increasing the power of one of the drivers and (2) adding a spacer plate to the expansion region. After increasing the power of Driver I from 50 to 56 kW, the H density asymmetry at the y = 25 cm intercept on the xy-plane (z = –22 cm) decreases from 0.04 to 0.01, and the value of H density increases. Following the addition of a spacer plate, the H density asymmetry further decreases to 0.004, but the value of H- density also shows a significant reduction. Finally, adding a magnetic shield to the back plate of the expansion region further optimizes H density from 1.48×1017 m–3 to 2.50×1017 m–3, yielding a 69% increase downstream. This is because increased plasma transport into the expansion region enhances the dissociation rate of H2 molecules, thereby yielding more H atoms. The attenuation of the magnetic filter field in the driver region after adding a magnetic shield also enhances the symmetry of the H density.
  • 图 1  双驱动负氢离子源的三维结构示意图

    Figure 1.  Schematic diagram of the 3D geometric structure of a double-driver negative hydrogen ion source.

    图 2  无Cs源(第一列)与有Cs源(第二列)中xz平面(y = 25 cm)的等离子体参数分布. 压强为0.6 Pa, 每个源功率为50 kW

    Figure 2.  Distribution of plasma parameters in the xz-plane (y = 25 cm) in a double-driver ion source without Cs and with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 3  无Cs源与有Cs源中xy平面(z = –22 cm)的等离子体参数分布. 压强为0.6 Pa, 每个源功率为50 kW

    Figure 3.  Distribution of plasma parameters in the xy-plane (z = –22 cm) in a double-driver ion source without Cs and with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 4  有Cs源中增加源I功率和添加隔板后xz平面(y = 25 cm)的等离子体参数分布, 其中压强固定为0.6 Pa

    Figure 4.  Distribution of plasma parameters in the xz-plane (y = 25 cm) after increasing the power of driver I and adding a spacer plate in ion source with Cs, where the pressure is fixed at 0.6 Pa.

    图 5  有Cs源中增加源I功率和添加隔板后xy平面(z = –22 cm)的等离子体参数分布, 其中压强固定为0.6 Pa

    Figure 5.  Distribution of plasma parameters in the xy-plane (z = –22 cm) after increasing the power of driver I and adding a spacer plate in ion source with Cs, where the pressure is fixed at 0.6 Pa.

    图 6  截线y = 25 cm上的H密度分布

    Figure 6.  H density at the intercept y = 25 cm.

    图 7  (a)无磁屏蔽与(b)添加磁屏蔽情况下xz平面(y = 25 cm)的过滤磁场分布; (c) 轴线上的磁场分布

    Figure 7.  Magnetic filter field distribution in the xz-plane (y = 25 cm) (a) without and (b) with magnetic shield; (c) profile of the magnetic field distribution on the driver axis.

    图 8  有Cs源中添加磁屏蔽后xz平面(y = 25 cm)的等离子体参数分布. 压强为0.6 Pa, 每源功率为50 kW

    Figure 8.  Distribution of plasma parameters in the xz-plane (y = 25 cm) without and with magnetic shield in ion source with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 9  有无磁屏蔽条件下等离子体参数沿轴向的分布

    Figure 9.  Distribution of plasma parameters along the axial direction with and without magnetic shield.

    图 10  有Cs源中添加磁屏蔽后xy平面(z = –22 cm)的等离子体参数分布. 压强为0.6 Pa, 每源功率为50 kW

    Figure 10.  Distribution of plasma parameters in the xy-plane (z = –22 cm) without and with magnetic shield in ion source with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 11  有无磁屏蔽条件下截线y = 25 cm上的等离子体参数分布

    Figure 11.  Distribution of plasma parameters at the intercept y = 25 cm with and without magnetic shield.

    表 1  模型中考虑的反应

    Table 1.  Reactions included in this model.

    反应描述参考文献
    1. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {{\text{H}}_2} $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+{\mathrm{H}}_{2} $弹性散射[25]
    2. $ e + H \to e + H $弹性散射[25]
    3. $ {\text{e}} + {{\text{H}}_2} \to 2{\text{e}} + {\text{H}} + {{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{2}\to 2\mathrm{e}+\mathrm{H}+{\mathrm{H}}^{+} $Dissociative ionization[26]
    4. $ {\text{e}} + {{\text{H}}_2} \to 2{\text{e}} + {\text{H}}_2^ + $Molecular ionization[26]
    5. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {\text{H}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+\mathrm{H}+\mathrm{H} $Dissociation[27]
    6. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {\text{H}} + {\text{H}}(n = 2) $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+\mathrm{H}+\mathrm{H}(\mathrm{n}=2) $Dissociation[28]
    7. $ {\text{e}} + {\text{H}} \to 2{\text{e}} + {{\text{H}}^ + } $$ \mathrm{e}+\mathrm{H}\to 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[26]
    8. $ {\text{e}} + {\text{H}} \to {\text{e}} + {\text{H}}(n = 2, 3) $$ \mathrm{e}+\mathrm{H}\to \mathrm{e}+\mathrm{H}(\mathrm{n}=\mathrm{2, 3}) $Excitation[26]
    9. $ {\text{e}} + {\text{H}}({\text{n}} = 2, 3) \to 2{\text{e}} + {{\text{H}}^ + } $$ \mathrm{e}+\mathrm{H}(\mathrm{n}=\mathrm{2, 3})\to 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[26]
    10.$ {\text{e}} + {\text{H}}_2^ + \to {\text{e}} + {{\text{H}}^ + } + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H} $Dissociative excitation[26]
    11.$ {\text{e}} + {\text{H}}_2^ + \to {\text{e}} + {{\text{H}}^ + } + {\text{H}}(n = 2) $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H}(\mathrm{n}=2) $Dissociative excitation[28]
    12.$ {\text{e}} + {\text{H}}_2^ + \to {\text{H}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{H}+\mathrm{H} $Dissociative recombination[29]
    13.$ {\text{e}} + {\text{H}}_3^ + \to {\text{e}} + 2{\text{H}} + {{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{3}^{+}\to \mathrm{e}+2\mathrm{H}+{\mathrm{H}}^{+} $Dissociative excitation[28]
    14.$ {\text{e}} + {\text{H}}_3^ + \to 3{\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{3}^{+}\to 3\mathrm{H} $Recombination[29]
    15.$ {\text{e}} + {\text{H}}_2^ + \to 2{\text{e}} + 2{{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to 2\mathrm{e}+{2\mathrm{H}}^{+} $Dissociative[26]
    16.$ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {{\text{H}}_2}(v = 1 - 14) $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3) $Radiative decay and excitation: EV[30]
    17.$ {\text{e}} + {{\text{H}}_2}(v = 1 - 14) \to {\text{e}} + 2{\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)\to \mathrm{e}+2\mathrm{H} $Dissociation[31]
    18.$ {\text{e}} + {{\text{H}}_2}(v = 1 - 14) \to {\text{H}} + {{\text{H}}^ - } $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)\to \mathrm{H}+{\mathrm{H}}^{-} $Dissociative electron attachment: DA[26]
    19.$ {\text{H}}_2^ + + {{\text{H}}_2} \to {\text{H}}_3^ + + {\text{H}} $$ {\mathrm{H}}_{2}^{+}+{\mathrm{H}}_{2}\to {\mathrm{H}}_{3}^{+}+\mathrm{H} $Ion formation[32]
    20.$ {\text{e}} + {{\text{H}}^ - } \to 2{\text{e}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}^{-}\to 2\mathrm{e}+\mathrm{H} $Electron detachment: ED[28]
    21.$ {\text{H}}_2^ + + {{\text{H}}^ - } \to {\text{H}} + {{\text{H}}_2} $$ {\mathrm{H}}_{2}^{+}+{\mathrm{H}}^{-}\to \mathrm{H}+{\mathrm{H}}_{2} $Mutual neutralization: MN[33]
    22.$ {\text{H}}_2^ + + {{\text{H}}^ - } \to 3{\text{H}} $Mutual neutralization: MN[39]
    23.$ {\text{H}}_3^ + + {{\text{H}}^ - } \to 2{{\text{H}}_2} $$ {\mathrm{H}}_{3}^{+}+{\mathrm{H}}^{-}\to 2{\mathrm{H}}_{2} $Mutual neutralization: MN[33]
    24.$ {\text{H}}_3^ + + {{\text{H}}^ - } \to 4{\text{H}} $Mutual neutralization: MN[39]
    25.$ {\text{H}}_{}^ + + {{\text{H}}^ - } \to {\text{H + H}} $Mutual neutralization: MN[39]
    26.$ {\text{H}}_{}^ + + {{\text{H}}^ - } \to {\text{H + H}}(n = 2, {\text{ }}3) $Mutual neutralization: MN[33]
    27.$ {\text{H}} + {{\text{H}}^ - } \to {\text{e}} + {{\text{H}}_2} $$ \mathrm{H}+{\mathrm{H}}^{-}\to \mathrm{e}+{\mathrm{H}}_{2} $Associative detachment: AD[33]
    28.$ {\text{wall \& PG: H}}_3^ + \to {{\text{H}}_2} + {\text{H}} $$ {\mathrm{H}}_{3}^{+}+\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\to {\mathrm{H}}_{2}+\mathrm{H} $Ion wall recombination[34]
    29.$ {\text{wall \& PG: H}}_3^ + \to 3{\text{H}} $Ion wall recombination[34]
    30.$ {\text{wall \& PG: H}}_2^ + \to {{\text{H}}_2} $$ \to {\mathrm{H}}_{2} $Ion wall recombination[34]
    31.$ {\text{wall \& PG: H}}_2^ + \to 2{\text{H}} $Ion wall recombination[34]
    32.$ {\text{wall \& PG: }}{{\text{H}}^ + } \to {\text{H}} $Ion wall recombination[34]
    33.$ {\text{wall \& PG: H}} + H \to {{\text{H}}_2} $$ \mathrm{H}+\mathrm{H}+\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\to {\mathrm{H}}_{2} $H wall recombination[35,36]
    34.$ {\text{wall \& PG: H}}(n = 2, {\text{ }}3) \to {\text{H}} $H(n) wall recombination[35,37]
    35.$ {\text{wall \& PG: }}{{\text{H}}_2}(v = 1 - 14) \to {{\text{H}}_2} $$ {\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)+ $Vibrational de-excitation: WD[35,38]
    36.$ {\text{PG: H}} \to {{\text{H}}^ - } $Surface generation[40]
    37.$ {\text{PG: }}{{\text{H}}^ + } \to {{\text{H}}^ - } $Surface generation[40]
    38.$ {\text{PG: H}}_2^ + \to 2{{\text{H}}^ - } $Surface generation[40]
    39.$ {\text{PG: H}}_3^ + \to {{\text{H}}_2} + {{\text{H}}^ - } $Surface generation[40]
    40.$ {\text{PG: H}}_3^ + \to 3{{\text{H}}^ - } $Surface generation[40]
    DownLoad: CSV
    Baidu
  • [1]

    张伟, 张新军, 刘鲁南, 朱光辉, 杨桦, 张华朋, 郑艺峰, 何开洋, 黄娟 2023 72 215201Google Scholar

    Zhang W, Zhang X J, Liu L N, Zhu G H, Yang Y, Zhang H P, Zheng Y F, He K Y, Huang J 2023 Acta Phys. Sin. 72 215201Google Scholar

    [2]

    孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤 2023 72 215203Google Scholar

    Sun Y X, Huang J, Gao Wei, Chang J F, Zhang W, Shi C, Li Y H 2023 Acta Phys. Sin. 72 215203Google Scholar

    [3]

    Kuriyama M, Akino N, Ebisawa N, Grisham L, Liquen H, Honda A, Itoh T, Kawai M, Kazawa M, Mogaki K, Ohara Y, Ohga T, Ohmori K, Okumura Y, Oohara H, Usui K, Watanabe K 1998 J. Nucl. Sci. Technol. 35 739Google Scholar

    [4]

    Wesson J 2004 Tokamaks (Oxford, UK: Oxford University Press

    [5]

    Takeiri Y, Morita S, Ikeda K, Ida K, Kubo S, Yokoyama M, Tsumori K, Oka Y, Osakabe M, Nagaoka K, Shimozuma T, Yoshinuma M, Narihara K, Funaba H, Goto M, Inagaki S, Tanaka K, Kaneko O, Komori A, Motojima O and the LHD Experimental Group 2007 Nucl. Fusion 47 1078Google Scholar

    [6]

    Franzen P, Falter H D, Fantz U, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Hilbert S, Leyer S, Martens C, McNeely P, Riedl R, Speth E, Wünderlich D 2007 Nucl. Fusion 47 264Google Scholar

    [7]

    Song S S, Yang W, Liu W, Yin S, Liu Y X, Gao F, Wang Y N, Zhao Y T 2021 Plasma Phys. 28 073512Google Scholar

    [8]

    Pamela J 1995 Plasma Phys. Controlled Fusion 37 A325Google Scholar

    [9]

    Bacal M, Nishiura M, Sasao M, Hamabe M, Wada M, Yamaoka H 2002 Rev. Sci. Instrum. 73 903Google Scholar

    [10]

    Bacal M 2006 Nucl. Fusion 46 S250Google Scholar

    [11]

    Berger M, Fantz U, Christ-Koch S and NNBI Team 2009 Plasma Sources Sci. Technol. 18 025004Google Scholar

    [12]

    Heinemann B, Fantz U, Kraus W, Schiesko L, Wimmer C, Wünderlich D, Bonomo F, Fröschle M, Nocentini R, Riedl R 2017 New J. Phys. 19 015001Google Scholar

    [13]

    Wimmer C, Schiesko L, Fantz U 2016 Rev. Sci. Instrum. 87 02B310Google Scholar

    [14]

    Wimmer C 2014 Ph. D. Dissertation (Augsburg: Universitaet Augsburg) (Germany

    [15]

    He Z Q, Yang W, Gao F, Du C R, Wang Y N 2024 Phys. Plasmas 31 043501Google Scholar

    [16]

    Cristofaro S, Friedl R, Fantz U 2021 Plasma 4 94Google Scholar

    [17]

    Fubiani G, Boeuf J P 2013 Phys. Plasmas 20 113511Google Scholar

    [18]

    Taccogna F, Schneider R, Longo S, Capitelli M 2008 Phys. Plasmas 15 103502Google Scholar

    [19]

    杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群 2013 62 025206Google Scholar

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Peng K, Liu L Q 2013 Acta Phys. Sin. 62 025206Google Scholar

    [20]

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Liu L Q, Peng K, Xia M Z 2012 Acta Phys. Sin. 61 235201 [杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重 2012 61 235201]Google Scholar

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Liu L Q, Peng K, Xia M Z 2012 Acta Phys. Sin. 61 235201Google Scholar

    [21]

    Fukumasa O, Nishida R 2006 Nucl. Fusion 46 S275Google Scholar

    [22]

    Gutser R, Wünderlich D, Fantz U and the NNBI-Team 2009 Plasma Phys. Controlled Fusion 51 045005Google Scholar

    [23]

    Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J, Wang Y N 2023 Plasma Sci. Technol. 25 105601Google Scholar

    [24]

    Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G, Kohen N 2011 Plasma Sources Sci. Technol. 20 015002Google Scholar

    [25]

    Petrov G M, Giuliani J L 2001 J. Appl. Phys. 90 619Google Scholar

    [26]

    Janev R K, Reiter D, Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Forschungszentrum, Zentralbibliothek

    [27]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B, Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913Google Scholar

    [28]

    Janev R K, Langer W D, Evans K, Post D E 1989 Elementary Processes in Hydrogen–Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer

    [29]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [30]

    Celiberto R, Janev R K, Laricchiuta A, Capitelli M, Wadehra J M, Atems D E 2001 At. Data Nucl. Data Tables 77 161Google Scholar

    [31]

    Celiberto R, Capitelli M, Laricchiuta A 2002 Phys. Scr. T 96 32

    [32]

    Bowers M T, Elleman D D, King J 1969 J. Chem. Phys. 50 4787Google Scholar

    [33]

    Matveyev A A, Silakov V P 1995 Plasma Sources Sci. Technol. 4 606Google Scholar

    [34]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Gorse C, Capitelli M, Bacal M, Bretagne J, Lagana A 1987 Chem. Phys. 117 177Google Scholar

    [37]

    Averkin S N, Gatsonis N A, Olson L 2015 IEEE Trans. Plasma Sci. 43 1926Google Scholar

    [38]

    Hiskes J R, Karo A M 1989 Appl. Phys. Lett. 54 508Google Scholar

    [39]

    Eerden M J J, Van de Sanden M C M, Otorbaev D K, Schram D C 1995 Phys. Rev. A 51 3362Google Scholar

    [40]

    Seidl M, Cui H L, Isenberg J D, Kwon H J, Lee B S, Melnychuk S T 1996 J. Appl. Phys. 79 2896Google Scholar

    [41]

    Zhang Y R, Wang X, Yang W, Gao F and Wang Y N 2021 Plasma Sources Sci. Technol. 30 075028Google Scholar

    [42]

    Fubiani G, Boeuf J P 2015 Plasma Sources Sci. Technol. 24 055001Google Scholar

    [43]

    Franzen P, Wünderlich D, Fantz U and the NNBI Team 2014 Plasma Phys. Controlled Fusion 56 025007Google Scholar

  • [1] CHEN Yue, ZHU Xiaodong. Diagnosis of number density of negative deuterium ions excited by electron cyclotron resonance by optical emission spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.74.20241605
    [2] YUAN Hong, YIN Xianghui, LYU Bo, JIN Yifei, BAE Cheonho, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong. Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST. Acta Physica Sinica, doi: 10.7498/aps.74.20241462
    [3] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, doi: 10.7498/aps.73.20240494
    [4] Li Sang-Ya, Zhang Ai-Lin, Xu Xin, Lü Tao, Wang Shi-Kang, Luo Qing. Uniformity optimization of ion beam sputtering coating equipment based on strong current ion source. Acta Physica Sinica, doi: 10.7498/aps.73.20231491
    [5] Cui Sui-Han, Zuo Wei, Huang Jian, Li Xi-Teng, Chen Qiu-Hao, Guo Yu-Xiang, Yang Chao, Wu Zhong-Can, Ma Zheng-Yong, Fu Jin-Yu, Tian Xiu-Bo, Zhu Jian-Hao, Wu Zhong-Zhen. High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source. Acta Physica Sinica, doi: 10.7498/aps.72.20222394
    [6] Zhang Wei, Zhang Xin-Jun, Liu Lu-Nan, Zhu Guang-Hui, Yang Hua, Zhang Hua-Peng, Zheng Yi-Feng, He Kai-Yang, Huang Juan. Investigation of ICRF-NBI synergetic heating induced fast ion distribution and transport in EAST tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20230482
    [7] Sun Yan-Xu, Huang Juan, Gao Wei, Chang Jia-Feng, Zhang Wei, Shi Chang, Li Yun-He. Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST. Acta Physica Sinica, doi: 10.7498/aps.72.20230846
    [8] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, doi: 10.7498/aps.71.20212250
    [9] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, doi: 10.7498/aps.65.045201
    [10] Yang Chao, Yin Mao-Wei, Shang Li-Ping, Wang Wei, Liu Yi, Xia Lian-Sheng, Deng Jian-Jun. Numerical simulation research of plasma characteristics in a multi-cusp proton source based on magnets layout. Acta Physica Sinica, doi: 10.7498/aps.64.085203
    [11] Yang Chao, Liu Da-Gang, Wang Hui-Hui, Yang Yu-Peng, Liao Fang-Yan, Peng Kai, Liu La-Qun. The MCC numerical algorithm of the extraction of the surface-produced negative hydrogen ions. Acta Physica Sinica, doi: 10.7498/aps.62.025206
    [12] Yang Chao, Liao Fang-Yan, Xie Hong-Quan. A full three-dimensional numerical diagnosis of Japan Atomic Energy Agency 10 Ampere multi-cusp negative hydrogen ion source. Acta Physica Sinica, doi: 10.7498/aps.62.215202
    [13] Yang Chao, Liu Da-Gang, Xia Meng-Zhong, Wang Hui-Hui, Wang Xiao-Min, Liu La-Qun, Peng Kai. 3D numerical study on volume production efficiency of J-PARC multicusp ion source. Acta Physica Sinica, doi: 10.7498/aps.61.185204
    [14] Yang Chao, Liu Da-Gang, Chen Ying, Xia Meng-Zhong, Wang Xue-Qiong, Wang Xiao-Min. 3D simulation optimization and design of multicusp ion source. Acta Physica Sinica, doi: 10.7498/aps.61.135203
    [15] Yang Chao, Liu Da-Gang, Wang Xue-Qiong, Wang Xiao-Min, Xia Meng-Zhong, Peng Kai. The three-dimensional numerical simulation study of H transmission and negative hydrogen ions production. Acta Physica Sinica, doi: 10.7498/aps.61.105204
    [16] Yang Chao, Liu Da-Gang, Liu La-Qun, Xia Meng-Zhong, Wang Hui-Hui, Wang Xiao-Ming. 3D simulation of the electron energy distribution in negative hydrogen ion source. Acta Physica Sinica, doi: 10.7498/aps.61.155205
    [17] Yang Chao, Liu Da-Gang, Wang Xiao-Ming, Liu La-Qun, Wang Xue-Qiong, Liu Sheng-Gang. A three-dimensional particle-in-cell/Monte Carlo computer simulation based on negative hydrogen ion source. Acta Physica Sinica, doi: 10.7498/aps.61.045204
    [18] Wu Shi-Gang, Shao Jian-Da, Fan Zheng-Xiu. Negative-ion element impurities breakdown model. Acta Physica Sinica, doi: 10.7498/aps.55.1987
    [19] ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РАЗМЕРОВ ВЫТЯГИВАЮЩЕГО УСТРОЙСТВА ВЫСОКОЧАСТОТНОГО ИОННОГО ИСТОЧНИКА. Acta Physica Sinica, doi: 10.7498/aps.19.782
    [20] . Acta Physica Sinica, doi: 10.7498/aps.16.107
Metrics
  • Abstract views:  413
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2025
  • Accepted Date:  20 August 2025
  • Available Online:  02 September 2025
  • /

    返回文章
    返回
    Baidu
    map