Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deep learning representation of flow time history for complex flow field

Zhan Qing-Liang Bai Chun-Jin Ge Yao-Jun

Citation:

Deep learning representation of flow time history for complex flow field

Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun
cstr: 32037.14.aps.71.20221314
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Flow analysis and low-dimensional representation model is of great significance in studying the complex flow mechanism. However, the turbulent flow field has complex and unstable spatiotemporal evolution feature, and it is difficult to establish the low-dimensional representation model for the flow big data. A low-dimensional representation model of complex flow is proposed and verified based on the flow time-history deep learning method. One-dimensional linear convolution, nonlinear full connection and nonlinear convolution autoencoding methods are established to reduce the dimension of unsteady flow time history data. The decoding mapping from low-dimensional space to time domain is obtained to build the representation model for turbulence. The proposed method is verified by using flow around the square clyinder with Re = 2.2×104. The results show that the flow time-history deep learning method can be used to effectively realize the low-dimensional representation of the flow and is suitable for solving the complex turbulent flow problems; the nonlinear one-dimensional convolutional autoencoder is superior to the full connection and linear convolution methods in representing the complex flow features. The method in this work is an unsupervised training method, which can be widely used in single-point-based sensor data processing, and is a new method to study the characteristics of turbulence and complex flow problems.
      Corresponding author: Zhan Qing-Liang, zhanqingliang@163.com
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 51778495, 51978527), the Open Project of the Industry Key Laboratory of Bridge Structure Wind Resistance Technology (Shanghai), China (Grant No. KLWRTBMC21-02), and the Fundamental Research Funds for the Central Universities (Grant No. 3132022189).
    [1]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar

    [2]

    Sirovich L 1987 Q. Appl. Math. 45 561Google Scholar

    [3]

    Schmid P J, Sesterhenn J 2010 J. Fluid Mech. 656 5Google Scholar

    [4]

    Clarence W R, Igor M, Shervin B, Philipp S, Dan S H 2009 J. Fluid Mech. 641 115Google Scholar

    [5]

    金晓威, 赖马树金, 李惠 2021 力学学报 53 2616Google Scholar

    Jin X W, Lai M S J, Li H 2021 Chin. J. Theor. Appl. Mech. 53 2616Google Scholar

    [6]

    Ling J, Kurzawski A, Templeton J 2016 J. Fluid Mech. 807 155Google Scholar

    [7]

    Li B, Yang Z, Zhang X, He G, Shen L 2020 J. Fluid Mech. 905 A10Google Scholar

    [8]

    Raissi M, Karniadakis G E 2018 J. Comput. Phys. 357 125Google Scholar

    [9]

    Kim H, Kim J, Won S, Lee C 2021 J. Fluid Mech. 910 A29Google Scholar

    [10]

    Murata T, Fukami K, Fukagata K 2020 J. Fluid Mech. 882 A13Google Scholar

    [11]

    Omata N, Shirayama S 2019 AIP Adv. 9 015006Google Scholar

    [12]

    Fukami K, Fukagata K, Taira K 2021 J. Fluid Mech. 909 A9Google Scholar

    [13]

    Liu B, Tang J, Huang H B, Lu X Y 2020 Phys. Fluids 32 025105Google Scholar

    [14]

    Callaham J, Maeda K, Brunton S L 2019 Phys. Rev. Fluids 4 103907Google Scholar

    [15]

    Fukami K, Maulik R, Ramachandra N, Fukagata K, Taira K 2021 Nat. Mach. Intell. 3 945Google Scholar

    [16]

    Erichson N B, Mathelin L, Yao Z W, Brunton S L, Maboney M W, Kutz J N 2020 Proc. R. Soc. A: Math. Phys. Eng. Sci. 476 20200097Google Scholar

    [17]

    Deng Z W, Chen Y J, Liu Y Z, Kim K C 2019 Phys. Fluids 31 075108Google Scholar

    [18]

    Han R K, Wang Y X, Zhang Y, Chen C 2019 Phys. Fluids 31 127101Google Scholar

    [19]

    Fukami K, Fukagata K, Taira K 2020 Theor. Comput. Fluid Dyn. 34 497Google Scholar

    [20]

    战庆亮, 白春锦, 葛耀君 2022 力学学报 54 822Google Scholar

    Zhan Q L, Bai C J, Ge Y J 2022 Chin. J. Theor. Appl. Mech. 54 822Google Scholar

    [21]

    战庆亮, 白春锦, 张宁, 葛耀君 2022 航空学报 43 126531Google Scholar

    Zhan Q L, Bai C J, Zhang N, Ge Y J 2022 Acta Aeronaut. Astronaut. Sin. 43 126531Google Scholar

    [22]

    战庆亮, 葛耀君, 白春锦 2022 71 074701Google Scholar

    Zhan Q L, Ge Y J, Bai C J 2022 Acta Phys. Sin. 71 074701Google Scholar

    [23]

    战庆亮, 周志勇, 葛耀君 2015 哈尔滨工业大学学报 47 75Google Scholar

    Zhan Q L, Zhou Z Y, Ge Y J 2015 J. Harbin Inst. Technol. 47 75Google Scholar

  • 图 1  数据示意图

    Figure 1.  Data type for modeling.

    图 2  整体计算域及平面网格划分 (a) 整体计算域; (b) 局部网格

    Figure 2.  Global computational domain and plane grid settings: (a) Global computing domain; (b) local mesh.

    图 3  数值模拟结果 (a) 升力与阻力系数; (b) z = 0切面瞬时速度矢量图; (c) y = 0切面瞬时速度矢量图; (d) x = 2切面瞬时速度矢量图

    Figure 3.  Partial results of simulation: (a) Lift and drag coefficient; (b) sectional instantaneous velocity vector diagram at z = 0; (c) sectional instantaneous velocity vector diagram at y = 0; (d) sectional instantaneous velocity vector diagram at x = 2.

    图 4  测点分布及时程结果 (a) 测点布置位置; (b) 部分测点的流向速度结果

    Figure 4.  Distributions of monitoring points and time history results: (a) Layout position of measure points; (b) flow velocity of some measure points.

    图 5  表征模型的原理

    Figure 5.  Methodology of the representation model.

    图 6  训练集的模型损失值 (a) 流向速度; (b) 横向速度; (c) 展向速度; (d) 速度绝对值

    Figure 6.  Loss function of different models on training set: (a) Flow velocity; (b) lateral velocity; (c) spanwise velocity; (d) absolute value of velocity.

    图 7  线性卷积模型的误差分布 (a) 流向速度; (b) 横向速度; (c) 展向速度; (d) 速度绝对值

    Figure 7.  Distributions of relatively error using LCN-AE: (a) Flow velocity; (b) lateral velocity; (c) spanwise velocity; (d) absolute value of velocity.

    图 8  全连接模型的误差分布 (a) 流向速度; (b) 横向速度; (c) 展向速度; (d) 速度绝对值

    Figure 8.  Distribution of relatively error using MLP-AE: (a) Flow velocity; (b) lateral velocity; (c) spanwise velocity; (d) absolute value of velocity.

    图 9  非线性卷积模型的误差分布 (a) 流向速度; (b) 横向速度; (c) 展向速度; (d) 速度绝对值

    Figure 9.  Distributions of relatively error using NCN-AE: (a) Flow velocity; (b) lateral velocity; (c) spanwise velocity; (d) absolute value of velocity.

    图 10  不同模型的误差散点图均值

    Figure 10.  Mean relatively error of different models.

    图 11  原始时程与重构时程的比较 (a) 流向速度; (b) 横向速度; (c) 展向速度; (d) 速度绝对值; (e) 流向速度的局部视图; (f) 横向速度的局部视图; (g) 展向速度的局部视图; (h) 速度绝对值的局部视图

    Figure 11.  Comparision of original and reconstructed flow time history samples: (a) Flow velocity; (b) lateral velocity; (c) spanwise velocity; (d) absolute value of velocity; (e) partial view of flow velocity; (f) partial view of lateral velocity; (g) partial view of spanwise velocity; (h) partial view of absolute value of velocity.

    表 1  非线性卷积自动编码模型参数

    Table 1.  NCN-AE model parameters.

    名称滤波器个数非线性激活方法
    Input
    Conv 164ReLU
    Conv 232ReLU
    Conv 320ReLU
    Flatten layer
    Dense layer20ReLU
    Code layer20ReLU
    Dense layer220000
    Reshape layer
    Conv_T 120ReLU
    Conv_T 232ReLU
    Conv_T 364ReLU
    Output1ReLU
    DownLoad: CSV

    表 2  全连接自动编码模型参数

    Table 2.  MLP-AE model parameters.

    名称神经元数非线性激活方法
    Input
    Dense 164ReLU
    Dense 232ReLU
    Dense 320ReLU
    Flatten layer
    Dense layer20ReLU
    Code layer20ReLU
    Dense layer220000
    Reshape layer
    Dense 120ReLU
    Dense 232ReLU
    Dense 364ReLU
    Output1ReLU
    DownLoad: CSV

    表 3  不同模型的误差散点图均值

    Table 3.  Mean relatively error of different models.

    流场参数LCN-AEMLP-AENCN-AE
    流向速度0.05540.03060.0104
    横向速度0.05320.01920.0076
    展向速度0.06210.01990.0039
    速度绝对值0.05850.03100.0122
    DownLoad: CSV
    Baidu
  • [1]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar

    [2]

    Sirovich L 1987 Q. Appl. Math. 45 561Google Scholar

    [3]

    Schmid P J, Sesterhenn J 2010 J. Fluid Mech. 656 5Google Scholar

    [4]

    Clarence W R, Igor M, Shervin B, Philipp S, Dan S H 2009 J. Fluid Mech. 641 115Google Scholar

    [5]

    金晓威, 赖马树金, 李惠 2021 力学学报 53 2616Google Scholar

    Jin X W, Lai M S J, Li H 2021 Chin. J. Theor. Appl. Mech. 53 2616Google Scholar

    [6]

    Ling J, Kurzawski A, Templeton J 2016 J. Fluid Mech. 807 155Google Scholar

    [7]

    Li B, Yang Z, Zhang X, He G, Shen L 2020 J. Fluid Mech. 905 A10Google Scholar

    [8]

    Raissi M, Karniadakis G E 2018 J. Comput. Phys. 357 125Google Scholar

    [9]

    Kim H, Kim J, Won S, Lee C 2021 J. Fluid Mech. 910 A29Google Scholar

    [10]

    Murata T, Fukami K, Fukagata K 2020 J. Fluid Mech. 882 A13Google Scholar

    [11]

    Omata N, Shirayama S 2019 AIP Adv. 9 015006Google Scholar

    [12]

    Fukami K, Fukagata K, Taira K 2021 J. Fluid Mech. 909 A9Google Scholar

    [13]

    Liu B, Tang J, Huang H B, Lu X Y 2020 Phys. Fluids 32 025105Google Scholar

    [14]

    Callaham J, Maeda K, Brunton S L 2019 Phys. Rev. Fluids 4 103907Google Scholar

    [15]

    Fukami K, Maulik R, Ramachandra N, Fukagata K, Taira K 2021 Nat. Mach. Intell. 3 945Google Scholar

    [16]

    Erichson N B, Mathelin L, Yao Z W, Brunton S L, Maboney M W, Kutz J N 2020 Proc. R. Soc. A: Math. Phys. Eng. Sci. 476 20200097Google Scholar

    [17]

    Deng Z W, Chen Y J, Liu Y Z, Kim K C 2019 Phys. Fluids 31 075108Google Scholar

    [18]

    Han R K, Wang Y X, Zhang Y, Chen C 2019 Phys. Fluids 31 127101Google Scholar

    [19]

    Fukami K, Fukagata K, Taira K 2020 Theor. Comput. Fluid Dyn. 34 497Google Scholar

    [20]

    战庆亮, 白春锦, 葛耀君 2022 力学学报 54 822Google Scholar

    Zhan Q L, Bai C J, Ge Y J 2022 Chin. J. Theor. Appl. Mech. 54 822Google Scholar

    [21]

    战庆亮, 白春锦, 张宁, 葛耀君 2022 航空学报 43 126531Google Scholar

    Zhan Q L, Bai C J, Zhang N, Ge Y J 2022 Acta Aeronaut. Astronaut. Sin. 43 126531Google Scholar

    [22]

    战庆亮, 葛耀君, 白春锦 2022 71 074701Google Scholar

    Zhan Q L, Ge Y J, Bai C J 2022 Acta Phys. Sin. 71 074701Google Scholar

    [23]

    战庆亮, 周志勇, 葛耀君 2015 哈尔滨工业大学学报 47 75Google Scholar

    Zhan Q L, Zhou Z Y, Ge Y J 2015 J. Harbin Inst. Technol. 47 75Google Scholar

Metrics
  • Abstract views:  7946
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2022
  • Accepted Date:  18 July 2022
  • Available Online:  08 November 2022
  • Published Online:  20 November 2022
  • /

    返回文章
    返回
    Baidu
    map