Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm

Wang Chen-Yang Duan Qian-Qian Zhou Kai Yao Jing Su Min Fu Yi-Chao Ji Jun-Yang Hong Xin Liu Xue-Qin Wang Zhi-Yong

Citation:

A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm

Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong
cstr: 32037.14.aps.69.20191935
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Photovoltaic power generation is affected by weather and geographical environment, showing fluctuations and random multi-interference, and its output power is easy to change with changes in external factors. Therefore, the prediction of output power is crucial to optimize the grid-connected operation of photovoltaic power generation and reduce the impact of uncertainty. This paper proposes a hybrid model of both convolutional neural network (CNN) and long short-term memory neural network (LSTM) based on genetic algorithm (GA) optimization (GA-CNN-LSTM). First, the CNN module is used to extract the spatial features of the data, and then the LSTM module is used to extract the temporal features and nearby hidden states. Optimizing the hyperparameter weights and bias values of the LSTM training network through GA. At the initial stage, the historical data is normalized, and all features were analyzed by grey relational degree. Important features are extracted to reduce the computational complexity of the data. Then, the GA-optimized CNN-LSTM hybrid neural network model (GA-CNN-LSTM) is applied for photovoltaic power prediction experiment. The GA-CNN-LSTM model was compared with the single neural network models such as CNN and LSTM, and the CNN-LSTM hybrid neural network model without GA optimization. Under the Mean Absolute Percentage Error index, the GA-CNN-LSTM algorithm proposed in this paper reduces the error by 1.537% compared with the ordinary single neural network model, and 0.873% compared with the unoptimized CNN-LSTM hybrid neural network algorithm model. From the perspective of training and test running time, the GA-CNN-LSTM model takes a little longer than the single neural network model, but the disadvantage is not obvious. To sum up, the performance of GA-CNN-LSTM model for photovoltaic power predicting is better.
      Corresponding author: Liu Xue-Qin, xqliu@cqut.edu.cn ; Wang Zhi-Yong, zywang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774041)and the Research Program of Basic Research and Frontier Technologyof Chongqing, China (Grant Nos. cstc2015jcyjA50033, cstc2015jcyjBX0056)
    [1]

    Wang K, Qi X, Liu H 2019 Appl. Energy 251 113315Google Scholar

    [2]

    Kushwaha V, Pindoriya N M 2019 RenewableEnergy 140 124Google Scholar

    [3]

    Shi J, Lee W J, Liu Y, Yang Y, Wang P 2012 IEEE Trans. Ind. Appl. 48 1064Google Scholar

    [4]

    Liu Y, Zhao J, Zhang M, et al. 2016 The 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Changsha, August, 2016 p29

    [5]

    Liu L, Zhao Y, Chang D, Xie J, Ma Z, Sun Q, Wennersten R 2018 Appl. Energy 228 70

    [6]

    Gao M, Li J, Hong F, Long D 2019 Energy 187 115

    [7]

    Abdel-Nasser M, Mahmoud K 2019 Neural Comput. Appl. 31 2727Google Scholar

    [8]

    魏小辉 2019 硕士学位论文 (兰州: 兰州大学)

    Wei X H 2019 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [9]

    SrivastavaN, Hinton G, Krizhevsky A, et al. 2014 J. Mach. Learn Res. 15 1929

    [10]

    https://www.pkbigdata.com/common/cmptIndex.html[2019-12-20]

    [11]

    Ashburner J, Friston K J 1999 Hum. Brain Mapp. 7254

    [12]

    Wei G W 2011 Expert Syst. Appl. 38 4824Google Scholar

    [13]

    Wang K, Qi X, Liu H 2019 Energy 189 116225Google Scholar

    [14]

    Chua L O 1997 Int. J. Bifurcation Chaos 7 2219Google Scholar

    [15]

    SajjadM, Khan S, Hussain T, Muhammad K, Sangaiah A K, Castiglione A, Baik S W 2019 Pattern Recognit. Lett. 126 123Google Scholar

    [16]

    Xiao F, Xiao Y, Cao Z, Gong K, Fang Z, Zhou J T 2019 Tenth International Conference on Graphics and Image Processing, Chengdu, China, 2018 p11069

    [17]

    Hüsken M, Stagge P 2003 Neurocomputing 50 223Google Scholar

    [18]

    Qing X, Niu Y 2018 Energy 148 461Google Scholar

    [19]

    Ordóñez F, Roggen D 2016 Sensors 16 115Google Scholar

    [20]

    Tan Z X, Goel A, Nguyen T S, Ong D C 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, May 14−18, 2019 p1

    [21]

    Gensler A, Henze J, Sick B, et al. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, October 9−12, 2016 p002858

    [22]

    Zhou X, Wan X, Xiao J 2016 Proceedings of the 2016 Conference on Empirical Methods in Natural Laguage Proccessing, Texas, USA, November 1−5, 2016 p247

    [23]

    Goldberg D E, Samtani M P 1986 In Electronic Computation American Society of Civil Engineers, American, February 1986 p471

    [24]

    Willmott C J, Matsuura K 2005 Clim. Res. 30 79Google Scholar

    [25]

    Ip W C, Hu B Q, Wong H, Xia J 2009 J. Hydrol. 379 284Google Scholar

  • 图 1  CNN-LSTM混合算法模型

    Figure 1.  CNN-LSTM hybrid algorithm model.

    图 2  一维卷积神经网络结构[14]

    Figure 2.  One dimensional convolutional neural network structure.

    图 3  LSTM神经网络结构[17]

    Figure 3.  LSTM neural network structure.

    图 4  遗传算法优化流程

    Figure 4.  Optimization process of genetic algorithm.

    图 5  CNN模型预测功率图

    Figure 5.  Power diagram of CNN model prediction.

    图 6  LSTM模型预测功率图

    Figure 6.  Power diagram of LSTM model prediction.

    图 7  CNN-LSTM模型预测功率图

    Figure 7.  Power diagram of CNN-LSTM model prediction.

    图 8  GA-CNN-LSTM模型预测功率图

    Figure 8.  Power diagram of GA-CNN-LSTM model prediction.

    表 1  灰色关联度分析值

    Table 1.  Grey relational analysis value.

    变量特征风速风向温度压强湿度实发辐照度
    Y0.340.280.450.010.620.97
    DownLoad: CSV

    表 2  模型预测误差指标

    Table 2.  Error index of model prediction.

    模型CNNLSTMCNN-LSTMGA-CNN-LSTM
    MAE0.347650.366810.287630.21424
    MSE0.650340.634470.604370.58529
    RMSE0.806430.774310.693210.61213
    MAPE0.060130.062330.054390.04476
    DownLoad: CSV

    表 3  模型运行时间

    Table 3.  Model running time.

    模型CNNLSTM CNN-LSTMGA-CNN-LSTM
    训练时间/s456.43451.576611.880503.740
    测试时间/s1.1301.2203.6902.770
    DownLoad: CSV
    Baidu
  • [1]

    Wang K, Qi X, Liu H 2019 Appl. Energy 251 113315Google Scholar

    [2]

    Kushwaha V, Pindoriya N M 2019 RenewableEnergy 140 124Google Scholar

    [3]

    Shi J, Lee W J, Liu Y, Yang Y, Wang P 2012 IEEE Trans. Ind. Appl. 48 1064Google Scholar

    [4]

    Liu Y, Zhao J, Zhang M, et al. 2016 The 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Changsha, August, 2016 p29

    [5]

    Liu L, Zhao Y, Chang D, Xie J, Ma Z, Sun Q, Wennersten R 2018 Appl. Energy 228 70

    [6]

    Gao M, Li J, Hong F, Long D 2019 Energy 187 115

    [7]

    Abdel-Nasser M, Mahmoud K 2019 Neural Comput. Appl. 31 2727Google Scholar

    [8]

    魏小辉 2019 硕士学位论文 (兰州: 兰州大学)

    Wei X H 2019 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [9]

    SrivastavaN, Hinton G, Krizhevsky A, et al. 2014 J. Mach. Learn Res. 15 1929

    [10]

    https://www.pkbigdata.com/common/cmptIndex.html[2019-12-20]

    [11]

    Ashburner J, Friston K J 1999 Hum. Brain Mapp. 7254

    [12]

    Wei G W 2011 Expert Syst. Appl. 38 4824Google Scholar

    [13]

    Wang K, Qi X, Liu H 2019 Energy 189 116225Google Scholar

    [14]

    Chua L O 1997 Int. J. Bifurcation Chaos 7 2219Google Scholar

    [15]

    SajjadM, Khan S, Hussain T, Muhammad K, Sangaiah A K, Castiglione A, Baik S W 2019 Pattern Recognit. Lett. 126 123Google Scholar

    [16]

    Xiao F, Xiao Y, Cao Z, Gong K, Fang Z, Zhou J T 2019 Tenth International Conference on Graphics and Image Processing, Chengdu, China, 2018 p11069

    [17]

    Hüsken M, Stagge P 2003 Neurocomputing 50 223Google Scholar

    [18]

    Qing X, Niu Y 2018 Energy 148 461Google Scholar

    [19]

    Ordóñez F, Roggen D 2016 Sensors 16 115Google Scholar

    [20]

    Tan Z X, Goel A, Nguyen T S, Ong D C 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, May 14−18, 2019 p1

    [21]

    Gensler A, Henze J, Sick B, et al. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, October 9−12, 2016 p002858

    [22]

    Zhou X, Wan X, Xiao J 2016 Proceedings of the 2016 Conference on Empirical Methods in Natural Laguage Proccessing, Texas, USA, November 1−5, 2016 p247

    [23]

    Goldberg D E, Samtani M P 1986 In Electronic Computation American Society of Civil Engineers, American, February 1986 p471

    [24]

    Willmott C J, Matsuura K 2005 Clim. Res. 30 79Google Scholar

    [25]

    Ip W C, Hu B Q, Wong H, Xia J 2009 J. Hydrol. 379 284Google Scholar

Metrics
  • Abstract views:  22320
  • PDF Downloads:  486
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2019
  • Accepted Date:  06 February 2020
  • Published Online:  20 May 2020
  • /

    返回文章
    返回
    Baidu
    map