Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and optimization of nickelate based Ruddlesden-Popper nickelate high-temperature superconducting thin films

LV Wei NIE Zihao WANG Heng CHEN Yaqi HUANG Haoliang ZHOU Guangdi XUE Qikun CHEN Zhuoyu

Citation:

Preparation and optimization of nickelate based Ruddlesden-Popper nickelate high-temperature superconducting thin films

LV Wei, NIE Zihao, WANG Heng, CHEN Yaqi, HUANG Haoliang, ZHOU Guangdi, XUE Qikun, CHEN Zhuoyu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The discovery of ambient-pressure nickelate high-temperature superconductivity provides a new platform for further exploring the underlying superconducting mechanisms. However, the thermodynamic metastability of Ruddlesden-Popper nickelates Lnn+1NinO3n+1 (Ln = lanthanide) poses significant challenges for precise control over their structures and oxygen stoichiometry. This study establishes a systematic approach to growing phase-pure, high-quality Ln3Ni2O7 thin films on LaAlO3 and SrLaAlO4 substrates by using gigantic-oxidative atomic-layer-by-layer epitaxy. The films grown under an ultrastrong oxidizing ozone atmosphere are superconducting without further post-annealing. Specifically, the optimal Ln3Ni2O7/SrLaAlO4 superconducting film exhibits an onset transition temperature (Tc,onset) of 50 K. Four critical factors governing the crystalline quality and superconducting properties of Ln3Ni2O7 films are identified as follows. 1) Precise cation stoichiometric control suppresses secondary phase formation. In an Ni-rich sample (+7%), the thin film forms an Ln4Ni3O10 secondary phase, and the R-T curve correspondingly exhibits metallic behavior. In contrast, an Ni-deficient sample forms an Ln2NiO4 secondary phase, with its R-T curve indicating insulating behavior over the entire temperature range. 2) Complete atomic layer-by-layer coverage minimizes stacking faults. Deviation from ideal monolayer coverage induces in-plane atomic number mismatch, which directly triggers out-of-plane lattice collapse or uplift near bulk-equilibrium positions. 3) Optimized interface reconstruction can improve the atomic arrangement at the interface. This can be achieved through methods such as annealing the SrLaAlO4 substrate or pre-depositing a 0.5-unit-cell-thick Ln2NiO4-phase buffer layer, which enhances the energy difference between the Ln-site and Ni-site layers to promote proper stacking. 4) Accurate oxygen content regulation is essential for achieving a single superconducting transition and high Tc,onset. Although the under-oxidized sample demonstrates a relatively high Tc,onset (50 K), it displays a two-step superconducting transition. Conversely, the over-oxidized sample exhibits a reduced Tc,onset of 37 K and similarly manifests a two-step transition. These findings provide valuable insights into the layer-by-layer epitaxy growth of diverse oxide high-temperature superconducting films.
  • 图 1  (a) GAE生长示意图; n = 1, 2, 3, 4镍氧化物RP相 (b) XRD θ-2θ扫描结果和(c)结构示意图; (d) (00 4n+2)峰位对于RP相A/B位名义摩尔比的依赖关系[22]

    Figure 1.  (a) Schematic diagram of GAE; (b) XRD θ-2θ scan results and (c) structural schematic diagram for RP phase nickelates with n = 1–4; (d) dependence of the (00 4n+2) peak position on the nominal A/B-site molar ratio of the RP phase[22].

    图 2  (a) SLAO衬底上富镍7%(S1)、阳离子化学计量平衡(S2)和缺镍11%(S3)(La, Pr, Sm)3Ni2O7样品XRD θ-2θ扫描结果; (b) R-T曲线和(c) 起始转变区域放大图. 阳离子化学计量通过改变LnOx与NiOx靶材的轰击脉冲数比例实现调控

    Figure 2.  (a) XRD θ-2θ scans and (b) R-T curves for 7% Ni-rich (S1), cation-stoichiometric (S2), and 11% Ni-deficient (S3) (La, Pr, Sm)3Ni2O7 samples on SLAO substrates; (c) an enlarged plot showing the onset of the transition. The cation stoichiometry is controlled by the pulse ratio of the LnOx and NiOx targets.

    图 3  阳离子化学计量平衡样品 (a) RHEED振荡曲线及其(b) 生长前后RHEED衍射图样; 缺镍11%样品(c), (d)和富镍7%样品(e), (f) RHEED振荡曲线及其区域放大图. 各样品中LnOx层的沉积对应了RHEED强度的下降, 而NiOx层的沉积则会使得强度上升

    Figure 3.  (a) RHEED intensity oscillations and (b) diffraction patterns before and after growth for the cation-stoichiometric sample; RHEED oscillation curves and their zoom-in views for the (c), (d) Ni-deficient (–11%) and (e), (f) Ni-rich (+7%) sample. For all samples, the deposition of the LnOx layer corresponds to a decrease in RHEED intensity, while that of the NiOx layer leads to an increase.

    图 4  逐层原子覆盖度分别为116.0%, 101.5%和100.0%样品 (a) XRD θ-2θ扫描结果; (b) X射线反射率及其相应(c) R-T曲线. 样品的逐层原子覆盖度通过同比缩放LnOx与NiOx轰击脉冲数实现调控

    Figure 4.  (a) XRD θ-2θ scan results, (b) X-ray reflectivity profiles, and their corresponding (c) R-T curves for samples with layer-by-layer atomic coverages of 116.0%, 101.5%, and 100.0%, respectively. The layer-by-layer atomic coverage is controlled by proportionally scaling the number of laser pulses for the LnOx and NiOx targets.

    图 5  在未处理(S7)、退火处理(S8)和预沉积缓冲层(S2)衬底上生长(La, Pr, Sm)3Ni2O7薄膜 (a) 结构示意图; (b) RHEED振荡曲线; (c) XRD θ-2θ扫描结果; (d) R-T曲线. 其中, S2样品的生长臭氧分压为1.2×10–2 mbar, S7和S8样品则为2.0×10–2 mbar, 其他生长参数保持一致. S8样品较低的Tc,onset源于样品的过氧化

    Figure 5.  (La, Pr, Sm)3Ni2O7 thin films grown on as-received (S7), annealed (S8), and pre-deposited buffer layer (S2) substrates: (a) Structural schematic diagrams; (b) RHEED intensity oscillations; (c) XRD θ-2θ scan results; (d) R-T curves. The ozone partial pressure during growth was 1.2×10–2 mbar for sample S2, and 2.0×10–2 mbar for samples S7 and S8, while all other growth parameters were kept consistent. The lower Tc of S8 originates from over-oxidation.

    图 6  臭氧分压分别为1.0×10–2, 1.2×10–2 和2.0×10–2 mbar下, (La, Pr, Sm)3Ni2O7薄膜的XRD θ-2θ扫描结果(a)和R-T曲线(b)

    Figure 6.  XRD θ-2θ scan results (a) and R-T curves (b) for (La, Pr, Sm)3Ni2O7 thin films deposited at ozone partial pressures of 1.0×10–2, 1.2×10–2, and 2.0×10–2 mbar.

    Baidu
  • [1]

    Anisimov V, Bukhvalov D, Rice T 1999 Phys. Rev. Lett. 59 7901

    [2]

    Chaloupka J, Khaliullin G 2008 Phys. Rev. Lett. 100 016404Google Scholar

    [3]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [4]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [5]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [6]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [7]

    Osada M, Wang B Y, Lee K, Li D F, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [8]

    Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y J, Murthy C, Raghu S, Kourkoutis L F, Hwang H Y 2023 Nature 619 288Google Scholar

    [9]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [10]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [11]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [12]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N A, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W E, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [13]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [14]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [15]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117402Google Scholar

    [16]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [17]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [18]

    Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T, Zhou X J 2023 Nat. Phys. 19 1841Google Scholar

    [19]

    Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T 2017 Phys. Rev. Lett. 119 217001Google Scholar

    [20]

    Wang Z C, Zou C W, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [21]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Natl. Sci. Rev. 12 nwae429Google Scholar

    [22]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 18Google Scholar

    [23]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 17Google Scholar

    [24]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 17 1221

    [25]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [26]

    Aggarwal L, Bozovic I 2024 Materials 17 2546Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117403Google Scholar

    [29]

    Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [30]

    Pan G A, Song Q, Segedin D F, Jung M C, El-Sherif H, Fleck E E, Goodge B H, Doyle S, Carrizales D C, N’Diaye A T, Shafer P, Paik H, Kourkoutis L F, El Baggari I, Botana A S, Brooks C M, Mundy J A 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [31]

    Sun W, Li Y, Cai X, Yang J, Guo W, Gu Z, Zhu Y, Nie Y 2021 Phys. Rev. B 104 184518Google Scholar

    [32]

    Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2020 APL Mater. 8 091112Google Scholar

    [33]

    Lei Q Y, Golalikhani M, Davidson B A, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R U, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D A, Hu M H, Guo J D, Singh R K, Xi X X 2017 npj Quantum Mater. 2 15Google Scholar

    [34]

    Barone M R, Dawley N M, Nair H P, Goodge B H, Holtz M E, Soukiassian A, Fleck E E, Lee K, Jia Y, Heeg T, Gatt R, Nie Y F, Muller D A, Kourkoutis L F, Schlom D G 2021 APL Mater. 9 021118Google Scholar

    [35]

    Kim J, Kim Y, Mun J, Choi W, Chang Y, Kim J R, Gil B, Lee J H, Hahn S, Kim H, Chang S H, Lee G D, Kim M, Kim C, Noh T W 2022 Small Methods 6 2200880Google Scholar

    [36]

    Liu G W, Yang T Y, Jiang Y X, Hossain S, Deng H B, Hasan M Z, Yin J X 2024 Quantum Front. 3 19Google Scholar

  • [1] LI Boyu, HU Kejun, LIN Renju, HAN Kun, HUANG Zhen, GE Binghui, SONG Dongsheng. Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films. Acta Physica Sinica, doi: 10.7498/aps.74.20250171
    [2] ZHENG Yaoyuan, MO Shicong, WU Wei. Recent advances and prospects in theoretical study of bilayer nickelate superconductor La3Ni2O7. Acta Physica Sinica, doi: 10.7498/aps.74.20250711
    [3] GUO Nan, AN Zhitong, CHEN Zhihui, DING Xiang, LI Chihao, FAN Yu, XU Haichao, PENG Rui. Optimization of infinite-layer nickelate superconductors via three in-situ atomic hydrogen reduction methods. Acta Physica Sinica, doi: 10.7498/aps.74.20250903
    [4] Zhang Mingxin, Pei Cuiying, Qi Yanpeng. Research Progress on High-temperature Superconductivity of Trilayer Nickelate. Acta Physica Sinica, doi: 10.7498/aps.74.20251258
    [5] ZHANG Ming, LIU Yu-Bo, SHAO Zhi-Yan, YANG Fan. Weak coupling studies on pairing mechanism and related properties of Ruddlesden-Popper phase layered nickelate based superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20251179
    [6] CHEN Zhuoyu, HUANG Haoliang, XUE Qikun. Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects. Acta Physica Sinica, doi: 10.7498/aps.74.20250331
    [7] Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang. Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity. Acta Physica Sinica, doi: 10.7498/aps.73.20240583
    [8] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, doi: 10.7498/aps.72.20230044
    [9] Wang Chao, Zhang Ming, Zhang Chi, Wang Ru-Zhi, Yan Hui. First-principle investigation of hybrid improper ferroelectricity of n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf). Acta Physica Sinica, doi: 10.7498/aps.70.20202142
    [10] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, doi: 10.7498/aps.70.20210012
    [11] Li Dan, Li Guo-Qing. Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20180387
    [12] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, doi: 10.7498/aps.67.20180317
    [13] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20181681
    [14] Zhang Chun-Lin, Chen Xiao-Bo, Yu Chun-Lei, Hu Li-Li, Pan Wei, Wu Zheng-Long, Liao Hong-Bo. Infrared multi-photon quantum cutting of Er-doped nanophase oxyfluoride vitroceramics. Acta Physica Sinica, doi: 10.7498/aps.59.5091
    [15] Liu Zhao-Jun, Meng Zhi-Guo, Zhao Sun-Yun, Kwok Hoi Sing, Wu Chun-Ya, Xiong Shao-Zhen. Crystallized poly-silicon thin film laterally induced by the Ni/Si oxide source. Acta Physica Sinica, doi: 10.7498/aps.59.2775
    [16] Chen Ying-Fei, Peng Wei, Li Jie, Chen Ke, Zhu Xiao-Hong, Wang Ping, Zeng Guang, Zheng Dong-Ning, Li Lin. In-situ monitoring of the growth of oxide thin films in PLD using high-pressure reflection high energy electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.52.2601
    [17] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.1917
    [18] Chen Zu-Yao, Tang Kai-Bin, Qian Yi-Tai, Sheng Zheng-Zhi, Wang Lu-Min. . Acta Physica Sinica, doi: 10.7498/aps.44.795
    [19] KANG JIN-FENG, CHEN XIN, WANG YOU-XIANG, HAN RU-QI, XIONG GUANG-CHENG, LIAN GUI-JUN, LI JIE, WU SI-CHENG. DIFFERENT INTERDIFFUSION CHARACTERISTICS BETWEEN Ag AND Al/YBa_2Cu_3O_(7-x) CONTACT INTERFACE. Acta Physica Sinica, doi: 10.7498/aps.44.1831
    [20] YU CHAO-FAN, CHEN BIN, HE GUO-ZHU. SUPERCONDUCTIVITY MECHANISM OF NON-CUPRATE SUPERCONDUCTORS. Acta Physica Sinica, doi: 10.7498/aps.43.1152
Metrics
  • Abstract views:  348
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2025
  • Accepted Date:  17 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回
    Baidu
    map