搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究

张铭 刘玉波 邵芷嫣 杨帆

引用本文:
Citation:

Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究

张铭, 刘玉波, 邵芷嫣, 杨帆

Weak coupling studies on pairing mechanism and related properties of Ruddlesden-Popper phase layered nickelate based superconductors

ZHANG Ming, LIU Yu-Bo, SHAO Zhi-Yan, YANG Fan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 压力下双层镍氧超导体展现出高达80 K的超导临界温度, 使Ruddlesden-Popper(RP)相层状镍氧化物成为研究非常规高温超导机制的新平台. 本综述从弱耦合理论计算角度出发, 系统回顾了近期在RP相层状镍酸盐中非常规超导配对机制的理论研究进展, 内容涵盖配对对称性、主导轨道成分及其自旋涨落特征等方面, 涉及加压条件下的La3Ni2O7、La4Ni3O10、La5Ni3O11块材以及常压条件下的La3Ni2O7薄膜等多个体系. 这些材料普遍表现出以Ni-3$d_{z^2}$与3$d_{x^2-y^2}$轨道为主导的低能电子自由度. 在RP块材中, 无规相近似、泛函重整化群和涨落交换近似等弱耦合方法普遍支持一种由自旋涨落介导、以层间$d_{z^2}$轨道为主导的$s^{\pm}$波配对机制. 其中, La3Ni2O7块材的超导可能与费米面上γ口袋的出现密切相关, 该口袋源于$d_{z^2}$轨道成键态的金属化过程. 另一方面, La4Ni3O10的超导特性主要取决于洪特耦合强度和掺杂浓度, 而非能带细节; 而La5Ni3O11则因层间约瑟夫森效应, 呈现出穹顶型的压力-超导相图. 对于La3Ni2O7薄膜, 理论研究表明其可能存在$s^{\pm}$波与$d_{xy}$波竞争的配对特征. 此外, 常压下的自旋密度波序与超导存在紧密联系. 整体而言, 弱耦合理论不仅解释了实验现象, 还为在常压下实现高温超导提供了理论思路.
    The discovery of superconductivity in Ruddlesden–Popper (RP) phase layered nickelates under high pressure has opened a new avenue for exploring unconventional pairing mechanisms beyond cuprates and iron-based superconductors. In particular, La3Ni2O7 exhibits a superconducting transition temperature ($ T_c $) as high as 80 K at ~15 GPa, making it the second class of oxides that achieve liquid-nitrogen-temperature superconductivity. Subsequent experiments have extended superconductivity to related compounds such as La4Ni3O10 and La5Ni3O11, as well as epitaxially grown thin films at ambient pressure. These findings have motivated extensive theoretical efforts to elucidate the microscopic pairing mechanism.This review summarizes recent progress from the perspective of weak-coupling theories, including random phase approximation (RPA), functional renormalization group (FRG), and fluctuation-exchange (FLEX) approaches. Density functional theory (DFT) calculations reveal that the low-energy degrees of freedom are dominated by Ni 3$ d_{z^2} $ and 3$ d_{x^2-y^2} $ orbitals. In La3Ni2O7, pressure-induced metallization of the bonding 3$ d_{z^2} $ band produces the γ pocket, enhancing spin fluctuations and stabilizing superconductivity. These fluctuations support superconductivity through interlayer 3$ d_{z^2} $ pairing characterized by an $ s^{\pm} $ gap. Hole doping or substitution may restore the γ pocket and enable bulk superconductivity at ambient pressure.For La4Ni3O10, theoretical calculations indicate predominantly $ s^{\pm} $ pairing from interlayer 3$ d_{z^2} $ orbitals, with weaker strength than La3Ni2O7, explaining its lower $ T_c $ and showing little sensitivity to band structure. In La5Ni3O11, composed of alternating single-layer and bilayer units, superconductivity mainly arises from the bilayer subsystem, again dominated by 3$ d_{z^2} $ orbitals. Interestingly, the interplay between inter-bilayer Josephson coupling and the suppression of density of states leads to a dome-shaped $ T_c $–pressure phase diagram, distinct from the monotonic behavior of La3Ni2O7.Epitaxial (La, Pr)3Ni2O7 thin films display superconductivity above 40 K at ambient pressure. Theory predicts doping-dependent pairing: $ s^{\pm} $ symmetry is favored at low doping levels, while dxy pairing emerges at higher doping, in agreement with experimental indications of both nodeless and nodal gap behaviors.Beyond superconductivity, experiments have revealed spin-density-wave (SDW) order in bulk La3Ni2O7 and La4Ni3O10 at ambient pressure. Weak-coupling calculations confirm that these SDWs are driven by Fermi surface nesting and that their suppression under pressure gives rise to strong spin fluctuations which act as the glue for Cooper pairing. This highlights the intimate connection between the density-wave parent states and high-pressure superconductivity in nickelates.In summary, weak-coupling theories provide a unified framework for RP nickelates, highlighting the key role of 3$ d_{z^2} $ orbitals, interlayer pairing, and spin fluctuations. They suggest that pressure, doping, substitution, and epitaxial strain can optimize superconductivity and potentially achieve high-$ T_c $ phases at ambient pressure. Key challenges remain in clarifying orbital competition, the SDW-superconductivity interplay, and strong-correlation effects, requiring close collaboration between advanced experiments and multi-orbital many-body theory.
  • 图 1  加压La3Ni2O7的晶格结构和超导电性 (a) 结构侧视图[1] (b) 压力导致的结构相变[1]. 层间Ni-O-Ni键角由168°转变为180° (c) 20.5 GPa压力下La3Ni2O7的电阻-温度曲线[2]. 插图为低温零电阻区域的放大图 (d) 以FeSe作为对照, 不同压力下La2PrNi2O7的磁化率-温度曲线[3], 当压力超过17 GPa时存在明显的抗磁信号

    图 2  La3Ni2O7中密度波性质的实验探测 (a) 不同压力下La3Ni2O7中电阻与温度的关系, 箭头表示密度波的相变温度[10] (b) 沿高对称方向的RIXS强度图[14]. 红色实心点为磁激发强度的峰值位置 (c) 波矢为(π/2, π/2)的SDW在实空间的示意图[15]

    图 3  La3Ni2O7的全压力-温度相图, 压力范围从常压到100 GPa[35]

    图 4  La4Ni3O10和La5Ni3O11的结构示意图以及超导-压力相图 (a) La4Ni3O10在常压(左图)以及加压(右图)的结构示意图[4] (b) La4Ni3O10的超导-压力相图[5](c) La5Ni3O11的结构示意图(左图)以及单层和双层NiO6八面体堆叠单元(右图)[8] (d) La5Ni3O11的超导-压力相图[8]

    图 5  (a) 文献[43]报告的生长在SrLaAlO4衬底上的(La, Pr)3Ni2O7薄膜的结构 (b) ARPES实验测得的SrLaAlO4衬底上的(La, Pr)3Ni2O7薄膜的超导能隙在费米面上的分布[44] (c) 生长在SrLaAlO4衬底上的(La, Pr)3Ni2O7薄膜的STM实验结果[45] 黑色为原始数据, 红色为背景信号, 蓝色为扣除背景的谱

    图 6  La3Ni2O7的电子结构特征 (a) 高压(29.5 GPa) 下的能带结构及各轨道成分的态密度[1] (b) 对应图(a)的费米口袋[49], 颜色表示轨道成分 (c) 低压(1.6 GPa)下的能带结构及各轨道成分的态密度[1] (d) 与图(c)对应的费米口袋[18]. (a, c)中黑色箭头指向$ d_{z^2} $轨道成键态能带 (e) 常压下$ d_{z^2} $轨道成键态能带(即γ)位于费米能级以下的ARPES实验证据[18] (f) Ni-$ d_{x^2-y^2} $轨道和Ni-$ d_{z^2} $轨道通过与O-$ p_{x, y} $轨道和O-$ p_{z} $轨道杂化成键[1] (g) 原胞内二个Ni原子的3d电子能级结构与占据情况[1]

    图 7  La4Ni3O10的能带结构和费米面以及La5Ni3O11的费米面. 其中(a)和(b)分别为依据实验参数得到的能带结构和投影态密度[57]. (c)为(a)中紧束缚能带在第一布里渊区中形成的费米面, 其中有五个费米口袋, 颜色表示$ d_{z^2} $和$ d_{x^2-y^2} $轨道的相对贡献[57]. (d)为La5Ni3O11的费米面, 图中左半部分的配色方案表示$ d_{z^2} $和$ d_{x^2-y^2} $轨道的相对贡献, 而右半部分的配色方案表示Ni原子在单层和双层子系统中的相对贡献[58].

    图 8  SrLaAlO4衬底上的(La, Pr)3Ni2O7薄膜的ARPES实验结果. 对于Ni-$ 3 d_{z^2} $成键能带是否穿过费米能而形成γ口袋, 不同实验给出了不同的结果 (a) 文献[62]报告的ARPES测得的费米面形状, 深色部分对应费米面[62] (b) 文献[62]中分析ARPES结果得到的费米面[62] (c) 文献[20]中报告的沿高对称线的能带结构. 图中标记了βγ能带的位置, 其中γ能带的顶部位于蓝色区域, 该结果显示γ能带完全位于费米能量以下而没有穿过费米能[20]. 小图为大图的虚线框区域的放大 (d) 文献[20]中分析ARPES结果得到的费米面[20]

    图 9  高压下La3Ni2O7的RPA计算结果[68] (a) $ \chi^{(s)} $的最大本征值在布里渊区的分布, 最强自旋涨落的波矢记为$ Q_{1} $, 其余较强的自旋涨落波矢记为$ Q_{2} $、$ Q_{3} $ (b) 不同配对对称性的配对本征值λ随U变化的函数关系 (c) $ s^{\pm} $配对的能隙函数在费米面上的分布, $ Q_1 $为费米口袋的嵌套矢量, 与图(a)中的自旋涨落矢量相等

    图 10  (a) 高压下La3Ni2O7的FLEX计算结果[70]. 在解除两轨道的耦合后(绿、蓝、红线), λ(对应超导$ T_c $)升高 (b) 高压(HP)和常压(AP)下La3Ni2O7在费米能附近的态密度[71], 虚线为费米能级 (c) 常压下La3Ni2O7的配对本征值λ与电子掺杂浓度δ的关系[71]. 虚线为零掺杂位置

    图 11  La3Ni2O7的超导$ T_c $与压力的关系 (a) 通过RPA[72]计算得出的$ T_c $与压力的关系, 青色虚线标记了结构相变 (b) 通过FRG[73]计算得出的$ T_c $与压力的关系, 不同参数下的计算结果(倒三角)与实验数据(深红色的正方形和圆形)对照

    图 12  高压La3Ni2O7中顶角氧缺陷对超导的影响的RPA研究[68] (a) 相互作用强度U-顶角氧缺陷浓度δ相图. SC和LMP分别表示超导和局域磁序, 黑色实线表示临界相互作用$ U_c $ (b) 磁矩在实空间的分布, 颜色表示磁矩大小. 红色虚线框内为顶角氧缺陷位置 (c) 超导$ T_c $与顶角氧缺陷浓度δ的关系

    图 13  RPA计算得到的La4Ni3O10的自旋极化率以及超导[57] (a) RPA重整化自旋极化率在第一布里渊区的分布, 其最大值位于$ {\bf{Q}}_1 $ (b) 各配对对称性的配对本征值λ的最大值对U的依赖 (c) 体系中主导的配对能隙$ s^{\pm} $波在费米面的分布, 其中$ {\bf{Q}}_1 $矢量联系了$ \alpha_1 $口袋和γ口袋之间的费米面嵌套 (d) 各配对对称性的配对本征值λ的最大值对掺杂浓度δ的依赖

    图 14  对$ \alpha_1 $口袋缺失的La4Ni3O10模型的研究 (a)和(b)分别是FRG[56]和RPA[57]计算得到的费米面嵌套以及超导能隙在费米面上的分布特征 (c) FRG得到的体系相对于掺杂水平$ \left \langle n \right \rangle $和洪特耦合$ J_H $的相图[56] (d) FLEX对La4Ni3O10(绿色线)和La3Ni2O7(粉色线)的λ随电子填充$ \Delta n $变化的研究[54]

    图 15  La5Ni3O11中超导对压力的依赖[58] (a) 体系态密度(DOS, 红线)和RPA计算得到的超导配对本征值λ(黑线)对压力的依赖 (b) La5Ni3O11中超导态-正常态-超导态的约瑟夫森结构示意图 (c) La5Ni3O11中超导$ T_c $的压力依赖

    图 16  (La, Pr)3Ni2O7/SrLaALO4薄膜的RPA计算结果[63] (a) 超导配对对称性与空穴掺杂程度δ的关系 (b—d) 空穴掺杂程度$ \delta=0.1 $情形 (b) 自旋极化率的最大本征值在布里渊区的分布, $ \boldsymbol{Q}_1 $为最大值所在位置 (c) 不同配对对称性的配对本征值λU的变化. 在所有U下均有s波的λ最大, 体系最终实现的超导配对为s波 (d) 费米面上的能隙函数分布. $ \boldsymbol{Q}_1 $为费米面嵌套矢量 (e—g) 空穴掺杂程度$ \delta=0.23 $情形 (e) 自旋极化率的最大本征值在布里渊区的分布, $ \boldsymbol{Q}_2 $为最大值所在位置 (f) 不同配对对称性的配对本征值λU的变化. 在所有U下均有$ d_{xy} $波的λ最大, 体系最终实现的超导配对为$ d_{xy} $波 (g) 费米面上的能隙函数分布. $ \boldsymbol{Q}_2 $为费米面嵌套矢量

    图 17  (La, Pr)3Ni2O7/SrLaALO4薄膜的其它计算结果 (a) 文献[42]报告的费米面附近能隙函数的动力学平均场结合RPA计算结果[42]. 颜色代表能隙的相对大小. $ \boldsymbol{Q}_1 $为费米面嵌套矢量 (b) 文献[77]报告的费米面附近能隙函数的FRG计算结果[77]. 图中点的颜色代表能隙函数的正负号, 点的大小代表能隙的相对大小. $ \boldsymbol{q}_1 $为费米面嵌套矢量

    图 18  常压下La3Ni2O7的RPA计算结果[71] (a) 常压下La3Ni2O7在折叠布里渊区中的能带结构. TB能带(红线)与DFT能带(黑线)在低能附近基本一致 (b) 与图(a)能带对应的费米口袋. Q为费米口袋嵌套矢量 (c) 自旋极化率$ \chi^{(s)} $的最大本征值在布里渊区的分布, 其最大值位置对应图(b)中的费米口袋嵌套矢量Q (d) 磁矩在实空间的面内分布. 元胞(虚线椭圆)包含A, B子格, $ e_{x/y} $与$ e_{a/b} $为两套格矢, 分布对应折叠和扩展的布里渊区

    图 19  常压下La4Ni3O10的RPA计算结果[78] (a) 常压下La4Ni3O10在第一布里渊区的费米面, $ {\bf{Q}} $矢量联系了其中的费米面嵌套 (b) 实空间中的SDW模式 (c) 当$ V=0 $时, $ \chi^s $随$ J_H $的变化情况, 其中亮点代表自旋密度波波矢所在位置 (d) λ的最大值对掺杂浓度δ的依赖, 其中$ J_H=U/6 $

    表 1  RP相镍基超导弱耦合理论研究汇总对比表

    Table 1.  Summary and Comparison Table of Weak Coupling Theory Research on RP-Phase NickelateSuperconductors

    材料体系计算方法模型关键特征主要结论摘要
    La3Ni2O7
    (块材, 高压)
    RPA [68]双层两轨道($ d_{x^2-y^2}, d_{z^2} $)最强自旋涨落波矢$ Q\approx(\pi, 0) $.
    $ s^{\pm} $波配对, 能隙在$ \gamma/\alpha $口袋与β口袋上符号相反.
    超导由层间$ d_{z^2} $轨道配对主导.
    FRG [69]双层两轨道($ d_{x^2-y^2}, d_{z^2} $)与RPA [63]定性一致
    FLEX [70]双层两轨道($ d_{x^2-y^2}, d_{z^2} $)与RPA/FRG结论一致.
    发现解除$ d_{x^2-y^2} $与$ d_{z^2} $轨道间的杂化能显著增强$ T_c $.
    La4Ni3O10
    (块材, 高压)
    RPA [57]三层多轨道模型最强自旋涨落波矢$ Q\approx(\pi, \pi) $.
    $ s^{\pm} $波配对, 对能带细节不敏感.
    超导由外层$ d_{{z^2}^2} $轨道间层间配对主导.
    FRG [56]三层多轨道模型(考虑$ \alpha_1 $口袋缺失)与RPA定性一致, 支持$ s^{\pm} $波配对.
    强调洪特耦合对超导的影响.
    费米面嵌套和能隙分布细节与RPA略有不同.
    FLEX [54]三层多轨道模型解释其相对较低的$ T_c $.
    La5Ni3O11
    (块材, 高压)
    RPA [58]解耦近似(单层+双层子系统)超导主要发生在双层子系统内, 为$ s^{\pm} $波配对.
    穹顶型$ T_c $-P相图与层间约瑟夫森耦合有关.
    (La, Pr)3Ni2O7
    (薄膜, 常压)
    RPA [63]存在γ口袋的假说配对对称性随空穴掺杂δ变化
    在实验关注的$ \delta\sim0.21 $附近, 为$ d_{xy} $波.
    DMFT+RPA [42]动力学平均场重整化能带得到$ s^{\pm} $波配对.
    FRG [77]费米口袋形状近正方形不同口袋间嵌套支持$ s^{\pm} $波配对.
    下载: 导出CSV
    Baidu
  • [1]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [2]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269Google Scholar

    [3]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634 579Google Scholar

    [4]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, et al 2024 Nature 631 531Google Scholar

    [5]

    Zhang M, Pei C, Peng D, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, et al 2025 Phys. Rev. X 15 021005

    [6]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [7]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [8]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, et al. 2025 arXiv: 2502.01018

    [9]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195Google Scholar

    [10]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, et al 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [12]

    Dan Z, Zhou Y, Huo M, Wang Y, Nie L, Wang M, Wu T, Chen X 2024 arXiv: 2402.03952

    [13]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar

    [14]

    Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, et al 2024 Nat. Commun. 15 9597Google Scholar

    [15]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560Google Scholar

    [16]

    Zhang J, Phelan D, Botana A, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J, Osborn R, et al 2020 Nat. Commun. 11 6003Google Scholar

    [17]

    Khasanov R, Hicken T J, Plokhikh I, Sazgari V, Keller L, Pomjakushin V, Bartkowiak M, Królak S, Winiarski M J, Krieger J A, et al. 2025 arXiv: 2503.04400

    [18]

    Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, et al 2024 Nat. Commun. 15 4373Google Scholar

    [19]

    Li H, Zhou X, Nummy T, Zhang J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [20]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372

    [21]

    Sun W, Jiang Z, Hao B, Yan S, Zhang H, Wang M, Yang Y, Sun H, Liu Z, Ji D, Gu Z, Zhou J, Shen D, Feng D, Nie Y 2025 arXiv: 2507.07409

    [22]

    Graser S, Maier T, Hirschfeld P, Scalapino D 2009 New J. Phys. 11 025016Google Scholar

    [23]

    Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Physical Review B-Condensed Matter and Materials Physics 85 035414Google Scholar

    [24]

    Kubo K 2007 Phys. Rev. B 75 224509Google Scholar

    [25]

    路洪艳, 王强华 2025 74 177401Google Scholar

    Lu H, Wang Q 2025 Acta Phys.Sin. 74 177401Google Scholar

    [26]

    李义典, 杨乐仙 2025 74 177402Google Scholar

    Li Y, Yang L 2025 Acta Phys.Sin. 74 177402Google Scholar

    [27]

    杜政忠, 李婕, 卢毅 2025 74 177103Google Scholar

    Du Z, Li J, Lu Y 2025 Acta Phys.Sin. 74 177103Google Scholar

    [28]

    郑姚远, 莫世聪, 吴为 2025 74 177403Google Scholar

    Zheng Y, Shicong M, Wei W 2025 Acta Phys.Sin. 74 177403Google Scholar

    [29]

    Li Y, Cao Y, Liu L, Peng P, Lin H, Pei C, Zhang M, Wu H, Du X, Zhao W, et al 2025 Science Bulletin 70 180Google Scholar

    [30]

    Liu C, Huo M, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412Google Scholar

    [31]

    Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, et al 2024 Nat. Commun. 15 7570Google Scholar

    [32]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, et al 2025 National Science Review nwaf220

    [33]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212

    [34]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J 2025 arXiv: 2501.14584

    [35]

    Zhao D, Zhou Y, Huo M, Wang Y, Nie L, Yang Y, Ying J, Wang M, Wu T, Chen X 2025 Science Bulletin

    [36]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D H, et al 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [37]

    Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, et al 2024 Phys. Rev. Lett. 133 146002Google Scholar

    [38]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [39]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, et al 2025 Nature 640 641Google Scholar

    [40]

    Liu Y, Ko E K, Tarn Y, Bhatt L, Li J, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y, Hwang H Y 2025 Nature Materials 24 1221Google Scholar

    [41]

    陈卓昱, 黄浩亮, 薛其坤 2025 74 097401Google Scholar

    Chen Z, Huang H, Xue Q 2025 Acta Phys.Sin. 74 097401Google Scholar

    [42]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 National Science Review nwaf253

    [43]

    Bhatt L, Jiang A Y, Ko E K, Schnitzer N, Pan G A, Segedin D F, Liu Y, Yu Y, Zhao Y F, Morales E A, Brooks C M, Botana A S, Hwang H Y, Mundy J A, Muller D A, Goodge B H 2025 arXiv: 2501.08204

    [44]

    Shen J, Zhou G, Miao Y, Li P, Zhipeng Ou Y Chen, Wang Z, Luan R, Sun H, Feng Z, Yong X, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, He J, Chen Z 2025 arXiv: 2502.17831

    [45]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788

    [46]

    Hao B, Wang M, Sun W, Yang Y, Mao Z, Yan S, Sun H, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603

    [47]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 1Google Scholar

    [48]

    Li Q, Sun J, Boetzel S, Ou M, Xiang Z N, Lechermann F, Wang B, Wang Y, Zhang Y J, Cheng J, Eremin I M, Wen H H 2025 arXiv: 2507.10399

    [49]

    Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [50]

    Chen C Q, Luo Z, Wang M, Wú W, Yao D X 2024 Phys. Rev. B 110 014503Google Scholar

    [51]

    Leonov I V 2024 Phys. Rev. B 109 235123Google Scholar

    [52]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [53]

    Tian P F, Ma H T, Ming X, Zheng X J, Li H 2024 Journal of Physics: Condensed Matter 36 355602Google Scholar

    [54]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, et al 2024 Phys. Rev. B 109 144511Google Scholar

    [55]

    Wang J X, Ouyang Z, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165140Google Scholar

    [56]

    Yang Q G, Jiang K Y, Wang D, Lu H Y, Wang Q H 2024 Physical Review B 109 L220506Google Scholar

    [57]

    Zhang M, Sun H, Liu Y B, Liu Q, Chen W Q, Yang F 2024 Phys. Rev. B 110 L180501Google Scholar

    [58]

    Zhang M, Chen C Q, Yao D X, Yang F 2025 arXiv: 2505.15906

    [59]

    Zhang Y, Lin L F, Moreo A, Okamoto S, Maier T A, Dagotto E 2025 arXiv: 2503.05075

    [60]

    Ouyang Z, He R Q, Lu Z Y 2025 arXiv: 2503.08682

    [61]

    LaBollita H, Botana A S 2025 arXiv: 2505.07394

    [62]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 National Science Review nwaf205

    [63]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506Google Scholar

    [64]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223

    [65]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Materials 9 80Google Scholar

    [66]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Computational Materials 11 3Google Scholar

    [67]

    Zhan J, Gu Y, Wu X, Hu J 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [68]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [69]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [70]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [71]

    Liu Y B, Sun H, Zhang M, Liu Q, Chen W Q, Yang F 2025 Phys. Rev. B 112 014510Google Scholar

    [72]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [73]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [74]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [75]

    Xia C, Liu H, Zhou S, Chen H 2025 Nat. Commun. 16 1054Google Scholar

    [76]

    Braz L B, Martins G B, da Silva L G G V D 2025 Phys. Rev. Res. 7 033023Google Scholar

    [77]

    Cao Y H, Jiang K Y, Lu H Y, Wang D, Wang Q H 2025 arXiv: 2507.13694

    [78]

    Zhang M, Sun H, Liu Y B, Liu Q, Chen W Q, Yang F 2025 Phys. Rev. B 111 144502Google Scholar

    [79]

    Pan Z, Lu C, Yang F, Wu C 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [80]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [81]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

  • [1] 李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升. 无限层镍基超导薄膜界面结构的电子显微学研究.  , doi: 10.7498/aps.74.20250171
    [2] 吕威, 聂子豪, 汪恒, 陈亚奇, 黄浩亮, 周广迪, 薛其坤, 陈卓昱. 镍基Ruddlesden-Popper相高温超导薄膜的制备与优化.  , doi: 10.7498/aps.74.20251080
    [3] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展.  , doi: 10.7498/aps.74.20241778
    [4] 杜政忠, 李婕, 卢毅. La3Ni2O7中近邻库仑相互作用诱导的电荷序.  , doi: 10.7498/aps.74.20250604
    [5] 张明鑫, 裴翠颖, 齐彦鹏. 三层镍氧化物高温超导研究进展.  , doi: 10.7498/aps.74.20251258
    [6] 李义典, 杨乐仙. 层状镍基超导体的电子结构和超快动力学.  , doi: 10.7498/aps.74.20250856
    [7] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象.  , doi: 10.7498/aps.73.20240917
    [8] 沈瑶. 镍基超导体中电荷序的实验研究进展.  , doi: 10.7498/aps.73.20240898
    [9] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究.  , doi: 10.7498/aps.70.20202142
    [10] 胡江平. 探索非常规高温超导体.  , doi: 10.7498/aps.70.20202122
    [11] 李宇, 盛玉韬, 杨义峰. 重费米子超导理论和材料研究进展.  , doi: 10.7498/aps.70.20201418
    [12] 李建新. 自旋涨落与非常规超导配对.  , doi: 10.7498/aps.70.20202180
    [13] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , doi: 10.7498/aps.69.20191627
    [14] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理.  , doi: 10.7498/aps.68.20190801
    [15] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展.  , doi: 10.7498/aps.67.20180936
    [16] 程金光. 高压调控的磁性量子临界点和非常规超导电性.  , doi: 10.7498/aps.66.037401
    [17] 冷春玲, 张英俏, 计新. 利用破坏对称性的超导人造原子制备型四比特纠缠态.  , doi: 10.7498/aps.64.184207
    [18] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究.  , doi: 10.7498/aps.59.8776
    [19] 曹天德, 徐丽娜. 配对对称性与带间作用.  , doi: 10.7498/aps.54.1406
    [20] 孙久勋, 章立源. s+d混合波对称性下联合模型的超导电性.  , doi: 10.7498/aps.45.1913
计量
  • 文章访问数:  349
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-30
  • 修回日期:  2025-09-25
  • 上网日期:  2025-09-30

/

返回文章
返回
Baidu
map