搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三层镍氧化物高温超导研究进展

张明鑫 裴翠颖 齐彦鹏

引用本文:
Citation:

三层镍氧化物高温超导研究进展

张明鑫, 裴翠颖, 齐彦鹏

Research Progress on High-temperature Superconductivity of Trilayer Nickelate

Zhang Mingxin, Pei Cuiying, Qi Yanpeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 中文摘要部分.近期,双层镍氧化物La3Ni2O7在压力下呈现的高温超导电性引发了广泛关注,进一步推动了镍基超导领域的研究热潮。对不同非常规超导体开展系统的比较研究,有助于深化对高温超导机制的理解。相较于铜基超导体,镍基体材料在晶体结构、电子结构与物性行为上存在显著差异,其实验研究亦面临更多挑战,例如:静水性对零电阻、抗磁性测试的影响,单晶氧空位缺陷以及压力下诱导的结构相变等。本文针对三层镍氧化物体材料,总结了高温超导研究进展及相关挑战,为后续镍氧化物新超导体系的研究提供了参考。
    The recent discovery of high-temperature superconductivity in the bilayer nickelate La3Ni3O7 under high pressure has attracted significant attention, further catalyzing intensive research on nickel-based superconductors. Systematic comparative studies of unconventional superconductors are essential for advancing the mechanistic understanding of high-Tc superconductivity. In contrast to cuprate superconductors, nickel-based bulk materials exhibit marked distinctions in crystal structure, electronic properties, and physical behaviors, while their experimental investigation faces additional challenges. These include the influence of hydrostatic conditions on zero-resistance state and diamagnetic response measurements, oxygen vacancy defects in single crystals, and pressure-induced structural phase transitions. This review comprehensively examines high-temperature superconductivity and associated research challenges in trilayer nickelate bulk materials, providing critical theoretical insights for future studies on nickel-based superconducting systems.
  • [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [2]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D-X, Zhang G-M, Wang M 2023 Nature 621 493

    [3]

    Zhang M, Pei C, Peng D, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, Wen C, Song J, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhang L, Li Z, Zhao J, Chen Y, Jin C, Guo H, Wu C, Yang F, Zeng Q, Yan S, Yang L, Qi Y 2025 Phys. Rev. X 15 021005

    [4]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J-g, Zhao J 2024 Nature 631 531

    [5]

    Pei C, Zhang M, Peng D, Huangfu S, Zhu S, Wang Q, Wu J, Xing Z, Zhang L, Chen Y, Zhao j, Yang W, Suo H, Guo H, Zeng Q, Qi Y 2024 arXiv:2411.08677

    [6]

    Zhang E, Peng D, Zhu Y, Chen L, Cui B, Wang X, Wang W, Zeng Q, Zhao J 2025 Phys. Rev. X 15 021008

    [7]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C-T, Wang B Y, Lee Y, Lee K, Lee J-S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935

    [8]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X 2025 Nat. Phys.

    [9]

    Li Q, Zhang Y-J, Xiang Z-N, Zhang Y, Zhu X, Wen H-H 2024 Chin. Phys. Lett. 41 017401

    [10]

    Poirot N, Phuoc V T, Gruener G, Gervais F 2005 Solid State Sci. 7 1157

    [11]

    Kumar Y, Kumar P, Dixit G, Asokan K 2013 AIP Conf. Proc. 1536 1021

    [12]

    Wu G, Neumeier J, Hundley M 2001 Phys. Rev. B 63 245120

    [13]

    Zhang J, Zheng H, Chen Y-S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402

    [14]

    Liu Z, Sun H, Huo M, Ma X, Ji Y, Yi E, Li L, Liu H, Yu J, Zhang Z 2023 Sci. China Phys. Mech. Astron. 66 217411

    [15]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644

    [16]

    Zhang J, Zheng H, Ren Y, Mitchell J F 2017 Cryst. Growth Des. 17 2730

    [17]

    Sánchez R, Causa M, Caneiro A, Butera A, Vallet-Regi M, Sayagués M, González-Calbet J, Garcia-Sanz F, Rivas J 1996 Phys. Rev. B 54 16574

    [18]

    Zheng H, Wang B-X, Phelan D, Zhang J, Ren Y, Krogstad M, Rosenkranz S, Osborn R, Mitchell J 2020 Crystals 10 557

    [19]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269

    [20]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z 2025 Natl. Sci. Rev. 12 nwaf220

    [21]

    Hou J, Yang P-T, Liu Z-Y, Li J-Y, Shan P-F, Ma L, Wang G, Wang N-N, Guo H-Z, Sun J-P, Uwatoko Y, Wang M, Zhang G-M, Wang B-S, Cheng J-G 2023 Chin. Phys. Lett. 40 117302

    [22]

    Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y 2024 J. Mater. Sci. Technol. 185 147

    [23]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, Kuroki K 2024 Phys. Rev. B 109 144511

    [24]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [25]

    Gao R, Jin L, Huyan S, Ni D, Wang H, Xu X, Bud’ko S L, Canfield P, Xie W, Cava R J 2024 ACS Appl. Mater. Interfaces 16 66857

    [26]

    Zhou Y, Guo J, Cai S, Sun H, Li C, Zhao J, Wang P, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H-k, Sun L 2025 Matter Radiat. Extrem. 10 027801

    [27]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature 630 847

    [28]

    Luo Z, Hu X, Wang M, Wú W, Yao D-X 2023 Phys. Rev. Lett. 131 126001

    [29]

    Shen Y, Qin M, Zhang G-M 2023 Chin. Phys. Lett. 40 127401

    [30]

    Yang Y-f, Zhang G-M, Zhang F-C 2023 Phys. Rev. B 108 L201108

    [31]

    Zhang Y, Lin L-F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510

    [32]

    Luo Z, Lv B, Wang M, Wú W, Yao D-X 2024 npj Quantum Mater. 9 61

    [33]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141

    [34]

    Yang Q-G, Wang D, Wang Q-H 2023 Phys. Rev. B 108 L140505

    [35]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [36]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. B 110 094509

    [37]

    Pan Z, Lu C, Yang F, Wu C 2024 Chin. Phys. Lett. 41 087401

    [38]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002

    [39]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121

    [40]

    Liu Y-B, Mei J-W, Ye F, Chen W-Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [41]

    Shi L, Luo Y, Wu W, Zhang Y 2025 Chin. Phys. B 34 077403

    [42]

    Carvalho M, Costa F A, Pereira I S, Bassat J, Grenier J 1997 J. Mater. Chem. 7 2107

    [43]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634 579

    [44]

    Li F, Guo N, Zheng Q, Shen Y, Wang S, Cui Q, Liu C, Wang S, Tao X, Zhang G-M, Zhang J 2024 Phys. Rev. Mater. 8 053401

    [45]

    Li F, Wang S, Ma C, Wang X, Liu C, Fan C, Han L, Wang S, Tao X, Zhang J 2024 Cryst. Growth Des. 24 347

    [46]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290

    [47]

    Rout D, Mudi S R, Hoffmann M, Spachmann S, Klingeler R, Singh S 2020 Phys. Rev. B 102 195144

    [48]

    Obradors X, Martinez B, Batlle X, Rodriguez‐Carvajal J, Fernandez‐Diaz M T, Martinez J L, Odier P 1991 J. Appl. Phys. 70 6329

    [49]

    Huangfu S, Jakub G D, Zhang X, Blacque O, Puphal P, Pomjakushina E, von Rohr F O, Schilling A 2020 Phys. Rev. B 101 104104

    [50]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer C 1992 Phys. Rev. B 45 8209

    [51]

    Zheng H, Zhang J, Wang B, Phelan D, Krogstad M J, Ren Y, Phelan W A, Chmaissem O, Poudel B, Mitchell J F 2019 Crystals 9 324

    [52]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403

    [53]

    Chen X, Poldi E H T, Huyan S, Chapai R, Zheng H, Bud'ko S L, Welp U, Canfield P C, Hemley R J, Mitchell J F, Phelan D 2025 Phys. Rev. B 111 094525

    [54]

    Lu C, Pan Z, Yang F, Wu C 2025 Phys. Rev. B 111 134515

    [55]

    Chen C-Q, Luo Z, Wang M, Wú W, Yao D-X 2024 Phys. Rev. B 110 014503

    [56]

    Yang Q-G, Jiang K-Y, Wang D, Lu H-Y, Wang Q-H 2024 Phys. Rev. B 109 L220506

    [57]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001

    [58]

    Zhang M, Sun H, Liu Y-B, Liu Q, Chen W-Q, Yang F 2024 Phys. Rev. B 110 L180501

    [59]

    Yang Q-G, Jiang K-Y, Wang D, Lu H-Y, Wang Q-H 2024 Phys. Rev. B 109 L220506

    [60]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001

    [61]

    Qin Q, Wang J, Yang Y-f 2024 The Innovation Materials 2 100102

    [62]

    Huang J, Zhou T 2024 Phys. Rev. B 110 L060506

    [63]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W-Q, Sun Y-J, Xue Q-K, Chen Z 2025 Nature 640 641

    [64]

    Liu Y, Ko E K, Tarn Y, Bhatt L, Li J, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y, Hwang H Y 2025 Nat. Mater. 24 1221

    [65]

    Chen Z, Huang H, Xue Q 2025 Acta Phys. Sin. 74 097401 (in Chinese) [陈卓昱, 黄浩亮, 薛其坤 2025 74 097401]

  • [1] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望.  , doi: 10.7498/aps.74.20250331
    [2] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展.  , doi: 10.7498/aps.74.20241778
    [3] 张铭, 刘玉波, 邵芷嫣, 杨帆. Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究.  , doi: 10.7498/aps.74.20251179
    [4] 沈瑶. 镍基超导体中电荷序的实验研究进展.  , doi: 10.7498/aps.73.20240898
    [5] 胡江平. 探索非常规高温超导体.  , doi: 10.7498/aps.70.20202122
    [6] 李建新. 自旋涨落与非常规超导配对.  , doi: 10.7498/aps.70.20202180
    [7] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , doi: 10.7498/aps.69.20191627
    [8] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理.  , doi: 10.7498/aps.68.20190801
    [9] 程金光. 高压调控的磁性量子临界点和非常规超导电性.  , doi: 10.7498/aps.66.037401
    [10] 方明虎, 林杨帆, 鲁俊生, 张国芳, 贺 青, 王杭栋. EuSr2Ru1-xTaxCu2O8中Ta替代效应.  , doi: 10.7498/aps.53.927
    [11] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响.  , doi: 10.7498/aps.51.2150
    [12] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究.  , doi: 10.7498/aps.50.769
    [13] 施大宁. BCS-van Hove方案与高温超导电性.  , doi: 10.7498/aps.45.1212
    [14] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制.  , doi: 10.7498/aps.43.1152
    [15] 曾文生, 张光寅. 晶格振动、载流子与高温超导电性的关系.  , doi: 10.7498/aps.42.205
    [16] 汪汉廷, 熊诗杰. 层状横波光学声子的非简谐性对高温超导电性的影响.  , doi: 10.7498/aps.41.506
    [17] 闻海虎, 李宏成, 戚振中, 曹效文. 高温超导薄膜中的涨落超导电性及其维度.  , doi: 10.7498/aps.39.1811
    [18] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性.  , doi: 10.7498/aps.35.1081
    [19] 罗棨光, 金铎, 刘志毅, 冉启泽, 金作文, 马明荣, 赵忠贤, 倪泳明. Ti-Pd系超导电性的研究.  , doi: 10.7498/aps.32.534
    [20] 朱宰万, 姜文植. 金属氢高温超导电性.  , doi: 10.7498/aps.30.271
计量
  • 文章访问数:  43
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-23

/

返回文章
返回
Baidu
map