-
Carbon quantum dots, as an emerging zero-dimensional carbon-based nanomaterial, have shown great potential applications in fields such as biomedicine, sensing detection, and LED lighting due to their excellent photoelectric properties, good biocompatibility, and ease of functionalization. Traditional synthesis methods like hydrothermal and microwave approaches often face challenges such as harsh reaction conditions, long reaction times, high energy consumption, and difficulties in controlling the optical properties of the products. The plasma electrochemistry method, which utilizes reactions between carbon source molecules and high-density active electrons, ions, and reactive species generated during the interaction of plasma with liquid, can efficiently drive the rapid synthesis and modification of carbon quantum dots. This method possesses the advantage of tunable multiple reaction parameters under mild conditions, providing a novel research method for synthesizing and modifying carbon quantum dots. This article first elucidates the growth mechanism of carbon quantum dots synthesized via plasma electrochemical methods and highlights the unique advantages of this approach in controlling product properties by regulating multidimensional parameters. Then, it reviews research progress of the regulation of the fluorescence quantum yield and wavelength of carbon quantum dots based on the adjustment of plasma reaction parameters. Finally, this article presents the application progress and prospects of plasma-prepared and plasma-modified carbon quantum dots in biomedicine, optoelectronic devices, pH sensing, and other fields.
-
Keywords:
- plasma electrochemistry /
- carbon quantum dots /
- fluorescence quantum yield /
- fluorescence emission wavelength
-
图 2 不同浓度DAMO对碳量子点的(a)荧光量子产率和(b)荧光光谱的影响; (c) 加入NaOH前后碳量子点样品的傅里叶变换红外光谱, 经许可转载[30]
Figure 2. (a) Modulation of quantum yield and (b) photoluminescence emission spectra with different concentrations of DAMO; (c) Fourier transform infrared spectrum of carbon quantum dots samples before and after adding NaOH. Reproduced with permission, Copyright 2023, IOP Publishing Ltd[30].
图 3 (a), (b) 等离子体处理30 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图; (c), (d) 等离子体处理60 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图, 经许可转载[32]
Figure 3. (a), (b) Photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 30 minutes of plasma treatment; (c), (d) photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 60 minutes of plasma treatment. Reproduced with permission, Copyright 2022, Wiley-VCH GmbH[32].
图 4 等离子体处理碳量子点的90 min在线测量的(a)荧光量子产率和(b)荧光光谱; 反应时间为15 min, 60 min和90 min制备的碳量子点的(c)拉曼光谱和(d)傅里叶变换红外光谱, 经许可转载[34]
Figure 4. (a) Fluorescence quantum yield and (b) fluorescence spectra of online measurement for 90 min of plasma-treated carbon quantum dots; (c) Raman spectra and (d) Fourier transform infrared spectra of carbon quantum dots synthesized by plasma treatment for 15, 60 and 90 min. Reproduced with permission, Copyright 2024, Wiley-VCH GmbH[34].
图 5 IR806碳点样品在氧气等离子体中处理不同时间的比较 (a)—(c) 三维荧光光谱; (d) 紫外–可见吸收光谱; (e) 傅里叶变换红外光谱; (f) 氢核磁共振光谱(g)—(i) 等离子体处理碳点2, 5和9 min的高分辨O 1s光电子能谱, 经许可转载[36]
Figure 5. Comparison between IR806-CDs samples treated with O2 plasma: (a)–(c) Three-dimensional fluorescence spectra; (d) UV–vis absorption spectra; (e) FTIR spectra; (f) H NMR spectra; (g)–(i) high-resolution O 1s XPS spectra of IR806-CDs treated with O2 plasma for 0, 2, 5, and 9 min. Reproduced with permission, Copyright 2024, American Chemical Society[36].
图 6 前驱物分别为(a), (b)一水合柠檬酸和L-赖氨酸(c), (d) 苋菜红(e), (f) 邻苯二胺时制备的碳量子点的紫外-可见光吸收光谱和三维荧光光谱
Figure 6. The UV-Vis absorption spectra and three-dimensional fluorescence spectra of carbon quantum dots prepared with precursors (a), (b) citric acid monohydrate and L-lysine; (c), (d) amaranth; (e), (f) o-phenylenediamine, respectively.
图 7 (a)—(c) 碳量子点浓度分别为10 g/L和10 mg/L的三维荧光光谱和吸收光谱;(d) 不同浓度碳量子点的荧光光谱, 经许可转载[37]
Figure 7. (a)–(c) Three-dimensional fluorescence spectra and absorption spectra of carbon quantum dots at concentrations of 10 g/L and 10 mg/L, respectively; (d) fluorescence spectra of carbon quantum dots at different concentrations. Reproduced with permission, Copyright 2021, Wiley-VCH GmbH[37].
图 11 利用微等离子体合成技术, 通过调控表面功能化, 实现基于生物质壳聚糖的氮掺杂石墨烯量子点的合理设计, 用于快速、灵敏且宽范围的pH传感示意图, 经许可转载[42]
Figure 11. Illustration of rational design of chitosan biomass-derived NGQDs with tuned surface functionalizations using microplasma synthesis for rapid, sensitive, and wide-range pH sensing. Reproduced with permission, Copyright 2022, American Chemical Society[42]
-
[1] Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A 2004 J. Am. Chem. Soc. 126 12736
Google Scholar
[2] Liu M L, Chen B B, Li C M, Huang C Z 2019 Green Chem. 21 449
Google Scholar
[3] Ghosal K, Ghosh A 2019 Mater. Sci. Eng. C 96 887
Google Scholar
[4] Li Y S, Zhong X X, Rider A E, Furman S A, Ostrikov K 2014 Green Chem. 16 2566
Google Scholar
[5] John B K, Mathew B 2023 Opt. Mater. 139 113819
Google Scholar
[6] Li N X, Lei F, Xu D D, Li Y, Liu J L, Shi Y 2021 Opt. Mater. 111 110618
Google Scholar
[7] Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H 2016 Nano Today 11 565
Google Scholar
[8] Choi S H 2017 J. Phys. D: Appl. Phys. 50 103002
Google Scholar
[9] 马雨彭雪, 王若愚, 秦晓茹, 张卿, 陈强, 钟晓霞 2023 力学学报 55 2938
Ma Y P X, Wang R Y, Qin X R, Zhang Q, Chen Q, Zhong X X 2023 Chin. J. Theor. Appl. Mech. 55 2938
[10] Wang Y F, Hu A G 2014 J. Mater. Chem. C 2 6921
Google Scholar
[11] Pho Q H, Escriba-Gelonch M, Losic D, Rebrov E V, Tran N N, Hessel V 2021 ACS Sustainable Chem. Eng. 9 4755
Google Scholar
[12] Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Petrovic Z L, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, Von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002
Google Scholar
[13] Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809
Google Scholar
[14] Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2019 Chem. Eng. Process. - Process Intensif. 140 29
Google Scholar
[15] Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2020 Chem. Eng. Sci. 220 115648
Google Scholar
[16] Huang X, Li Y, Zhong X, Rider A E, Ostrikov K 2015 Plasma Processes Polym. 12 59
Google Scholar
[17] Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N 2019 Materials 12 2751
Google Scholar
[18] Chiang W, Mariotti D, Sankaran R M, Eden J G, Ostrikov K 2020 Adv. Mater. 32 1905508
Google Scholar
[19] Delgado H E, Elg D T, Bartels D M, Rumbach P, Go D B 2020 Langmuir 36 1156
Google Scholar
[20] Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2015 Spectrochim. Acta, Part B 6 7248
[21] Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2021 Spectrochim. Acta, Part B 186 106307
Google Scholar
[22] Lee S, Kang H, Kim M, Yun G 2025 Plasma Processes Polym. 22 70005
Google Scholar
[23] Yang J S, Pai D Z, Chiang W H 2019 Carbon 153 315
[24] Lim S Y, Shen W, Gao Z 2015 Chem. Soc. Rev. 44 362
Google Scholar
[25] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620
Google Scholar
[26] Adhikari B C, Lamichhane P, Lim J S, Nguyen L N, Choi E H 2021 Results Phys. 30 104863
Google Scholar
[27] Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
Google Scholar
[28] Adhikari E R, Samara V, Ptasinska S 2019 Biol. Chem. 400 93
[29] Zhang Y, Wang Y L, Feng X T, Zhang F, Yang Y Z, Liu X G 2016 Appl. Surf. Sci. 387 1236
Google Scholar
[30] Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2023 J. Phys. D: Appl. Phys. 56 475202
Google Scholar
[31] Kim K, Chokradjaroen C, Saito N 2020 Nano Ex. 1 020043
Google Scholar
[32] Mohammadzaheri M, Siahpoush V, Asgari A 2022 Plasma Processes Polym. 19 2200089
Google Scholar
[33] Zhang Y Q, Liu X Y, Fan Y, Guo X Y, Zhou L, Lv Y, Lin J 2016 Nanoscale 8 15281
Google Scholar
[34] Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 22 2400168
[35] Park S Y, Lee C Y, An H R, Kim H, Lee Y C, Park E C, Chun H S, Yang H Y, Choi S H, Kim H S, Kang K S, Park H G, Kim J P, Choi Y, Lee J, Lee H U 2017 Nanoscale 9 9210
Google Scholar
[36] Zhang Q, Wang F Q, Liu J L, Wang R Y, Ma Y P, Xia F F, Qiu Y Y, Zeng L W, Xu S F, Zhong X X 2024 Nano Lett. 24 13819
Google Scholar
[37] Weerasinghe J, Scott J, Deshan A D K, Chen D, Singh A, Sen S, Sonar P, Vasilev K, Li Q, Ostrikov K 2022 Adv. Mater. Technol. 7 2100586
Google Scholar
[38] Zhou Z J, Song J B, Nie L M, Chen X Y 2016 Chem. Soc. Rev. 45 6597
Google Scholar
[39] Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Processes Polym. 21 2300174
Google Scholar
[40] Li C X, Yu C, Wang C F, Chen S 2013 J. Mater. Sci. 48 6307
Google Scholar
[41] Thakur M K, Fang C Y, Yang Y T, Effendi T A, Roy P K, Chen R S, Ostrikov K K, Chiang W H, Chattopadhyay S 2020 ACS Appl. Mater. Interfaces 12 28550
Google Scholar
[42] Kurniawan D, Anjali B A, Setiawan O, Ostrikov K K, Chung Y G, Chiang W H 2022 ACS Appl. Mater. Interfaces 14 1670
Google Scholar
Metrics
- Abstract views: 174
- PDF Downloads: 9
- Cited By: 0