Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of preparation, modification, and optical performance regulation of carbon quantum dots based on plasma electrochemistry method

SHAO Huiwu GAO Shuo WANG Ruoyu MA Yupengxue ZHANG Qing ZHONG Xiaoxia

Citation:

Research progress of preparation, modification, and optical performance regulation of carbon quantum dots based on plasma electrochemistry method

SHAO Huiwu, GAO Shuo, WANG Ruoyu, MA Yupengxue, ZHANG Qing, ZHONG Xiaoxia
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Carbon quantum dots, as an emerging zero-dimensional carbon-based nanomaterial, have shown great potential applications in fields such as biomedicine, sensing detection, and LED lighting due to their excellent photoelectric properties, good biocompatibility, and ease of functionalization. Traditional synthesis methods like hydrothermal and microwave approaches often face challenges such as harsh reaction conditions, long reaction times, high energy consumption, and difficulties in controlling the optical properties of the products. The plasma electrochemistry method, which utilizes reactions between carbon source molecules and high-density active electrons, ions, and reactive species generated during the interaction of plasma with liquid, can efficiently drive the rapid synthesis and modification of carbon quantum dots. This method possesses the advantage of tunable multiple reaction parameters under mild conditions, providing a novel research method for synthesizing and modifying carbon quantum dots. This article first elucidates the growth mechanism of carbon quantum dots synthesized via plasma electrochemical methods and highlights the unique advantages of this approach in controlling product properties by regulating multidimensional parameters. Then, it reviews research progress of the regulation of the fluorescence quantum yield and wavelength of carbon quantum dots based on the adjustment of plasma reaction parameters. Finally, this article presents the application progress and prospects of plasma-prepared and plasma-modified carbon quantum dots in biomedicine, optoelectronic devices, pH sensing, and other fields.
  • 图 1  等离子体与水接触放电时产生的重要活性物种示意图, 经许可转载[19]

    Figure 1.  Schematic diagram of some of the most important species generated during plasma discharge in contact with water, reproduced with permission, Copyright 2020, American Chemical Society[19].

    图 2  不同浓度DAMO对碳量子点的(a)荧光量子产率和(b)荧光光谱的影响; (c) 加入NaOH前后碳量子点样品的傅里叶变换红外光谱, 经许可转载[30]

    Figure 2.  (a) Modulation of quantum yield and (b) photoluminescence emission spectra with different concentrations of DAMO; (c) Fourier transform infrared spectrum of carbon quantum dots samples before and after adding NaOH. Reproduced with permission, Copyright 2023, IOP Publishing Ltd[30].

    图 3  (a), (b) 等离子体处理30 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图; (c), (d) 等离子体处理60 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图, 经许可转载[32]

    Figure 3.  (a), (b) Photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 30 minutes of plasma treatment; (c), (d) photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 60 minutes of plasma treatment. Reproduced with permission, Copyright 2022, Wiley-VCH GmbH[32].

    图 4  等离子体处理碳量子点的90 min在线测量的(a)荧光量子产率和(b)荧光光谱; 反应时间为15 min, 60 min和90 min制备的碳量子点的(c)拉曼光谱和(d)傅里叶变换红外光谱, 经许可转载[34]

    Figure 4.  (a) Fluorescence quantum yield and (b) fluorescence spectra of online measurement for 90 min of plasma-treated carbon quantum dots; (c) Raman spectra and (d) Fourier transform infrared spectra of carbon quantum dots synthesized by plasma treatment for 15, 60 and 90 min. Reproduced with permission, Copyright 2024, Wiley-VCH GmbH[34].

    图 5  IR806碳点样品在氧气等离子体中处理不同时间的比较 (a)—(c) 三维荧光光谱; (d) 紫外–可见吸收光谱; (e) 傅里叶变换红外光谱; (f) 氢核磁共振光谱(g)—(i) 等离子体处理碳点2, 5和9 min的高分辨O 1s光电子能谱, 经许可转载[36]

    Figure 5.  Comparison between IR806-CDs samples treated with O2 plasma: (a)–(c) Three-dimensional fluorescence spectra; (d) UV–vis absorption spectra; (e) FTIR spectra; (f) H NMR spectra; (g)–(i) high-resolution O 1s XPS spectra of IR806-CDs treated with O2 plasma for 0, 2, 5, and 9 min. Reproduced with permission, Copyright 2024, American Chemical Society[36].

    图 6  前驱物分别为(a), (b)一水合柠檬酸和L-赖氨酸(c), (d) 苋菜红(e), (f) 邻苯二胺时制备的碳量子点的紫外-可见光吸收光谱和三维荧光光谱

    Figure 6.  The UV-Vis absorption spectra and three-dimensional fluorescence spectra of carbon quantum dots prepared with precursors (a), (b) citric acid monohydrate and L-lysine; (c), (d) amaranth; (e), (f) o-phenylenediamine, respectively.

    图 7  (a)—(c) 碳量子点浓度分别为10 g/L和10 mg/L的三维荧光光谱和吸收光谱;(d) 不同浓度碳量子点的荧光光谱, 经许可转载[37]

    Figure 7.  (a)–(c) Three-dimensional fluorescence spectra and absorption spectra of carbon quantum dots at concentrations of 10 g/L and 10 mg/L, respectively; (d) fluorescence spectra of carbon quantum dots at different concentrations. Reproduced with permission, Copyright 2021, Wiley-VCH GmbH[37].

    图 8  基于等离子体的碳量子点制备、叶酸受体靶向和光动力治疗作用示意图, 经许可转载[39]

    Figure 8.  Schematic diagram of the plasma-based preparation of carbon quantum dots, their folate receptor targeting, and photodynamic therapeutic effect. Reproduced with permission, Copyright 2023, Wiley-VCH GmbH[39].

    图 9  蓝色荧光碳点的制备及其在高显色指数白色LED中的应用, 经许可转载[40]

    Figure 9.  Illustration of synthesizing blue fluorescent CDs with their application toward white LEDs with high color rendering index. Reproduced with permission, Copyright 2013, Springer Nature[40].

    图 10  Au@GQD作为光电探测器的光吸收层以及在光照下的动态光响应, 经许可转载[41]

    Figure 10.  Au@GQD as the photoabsorber in a photodetector and its dynamic photoresponse under illumination. Reproduced with permission, Copyright 2020, American Chemical Society[41].

    图 11  利用微等离子体合成技术, 通过调控表面功能化, 实现基于生物质壳聚糖的氮掺杂石墨烯量子点的合理设计, 用于快速、灵敏且宽范围的pH传感示意图, 经许可转载[42]

    Figure 11.  Illustration of rational design of chitosan biomass-derived NGQDs with tuned surface functionalizations using microplasma synthesis for rapid, sensitive, and wide-range pH sensing. Reproduced with permission, Copyright 2022, American Chemical Society[42]

    Baidu
  • [1]

    Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A 2004 J. Am. Chem. Soc. 126 12736Google Scholar

    [2]

    Liu M L, Chen B B, Li C M, Huang C Z 2019 Green Chem. 21 449Google Scholar

    [3]

    Ghosal K, Ghosh A 2019 Mater. Sci. Eng. C 96 887Google Scholar

    [4]

    Li Y S, Zhong X X, Rider A E, Furman S A, Ostrikov K 2014 Green Chem. 16 2566Google Scholar

    [5]

    John B K, Mathew B 2023 Opt. Mater. 139 113819Google Scholar

    [6]

    Li N X, Lei F, Xu D D, Li Y, Liu J L, Shi Y 2021 Opt. Mater. 111 110618Google Scholar

    [7]

    Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H 2016 Nano Today 11 565Google Scholar

    [8]

    Choi S H 2017 J. Phys. D: Appl. Phys. 50 103002Google Scholar

    [9]

    马雨彭雪, 王若愚, 秦晓茹, 张卿, 陈强, 钟晓霞 2023 力学学报 55 2938

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Chen Q, Zhong X X 2023 Chin. J. Theor. Appl. Mech. 55 2938

    [10]

    Wang Y F, Hu A G 2014 J. Mater. Chem. C 2 6921Google Scholar

    [11]

    Pho Q H, Escriba-Gelonch M, Losic D, Rebrov E V, Tran N N, Hessel V 2021 ACS Sustainable Chem. Eng. 9 4755Google Scholar

    [12]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Petrovic Z L, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, Von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002Google Scholar

    [13]

    Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809Google Scholar

    [14]

    Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2019 Chem. Eng. Process. - Process Intensif. 140 29Google Scholar

    [15]

    Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2020 Chem. Eng. Sci. 220 115648Google Scholar

    [16]

    Huang X, Li Y, Zhong X, Rider A E, Ostrikov K 2015 Plasma Processes Polym. 12 59Google Scholar

    [17]

    Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N 2019 Materials 12 2751Google Scholar

    [18]

    Chiang W, Mariotti D, Sankaran R M, Eden J G, Ostrikov K 2020 Adv. Mater. 32 1905508Google Scholar

    [19]

    Delgado H E, Elg D T, Bartels D M, Rumbach P, Go D B 2020 Langmuir 36 1156Google Scholar

    [20]

    Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2015 Spectrochim. Acta, Part B 6 7248

    [21]

    Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2021 Spectrochim. Acta, Part B 186 106307Google Scholar

    [22]

    Lee S, Kang H, Kim M, Yun G 2025 Plasma Processes Polym. 22 70005Google Scholar

    [23]

    Yang J S, Pai D Z, Chiang W H 2019 Carbon 153 315

    [24]

    Lim S Y, Shen W, Gao Z 2015 Chem. Soc. Rev. 44 362Google Scholar

    [25]

    Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620Google Scholar

    [26]

    Adhikari B C, Lamichhane P, Lim J S, Nguyen L N, Choi E H 2021 Results Phys. 30 104863Google Scholar

    [27]

    Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001Google Scholar

    [28]

    Adhikari E R, Samara V, Ptasinska S 2019 Biol. Chem. 400 93

    [29]

    Zhang Y, Wang Y L, Feng X T, Zhang F, Yang Y Z, Liu X G 2016 Appl. Surf. Sci. 387 1236Google Scholar

    [30]

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2023 J. Phys. D: Appl. Phys. 56 475202Google Scholar

    [31]

    Kim K, Chokradjaroen C, Saito N 2020 Nano Ex. 1 020043Google Scholar

    [32]

    Mohammadzaheri M, Siahpoush V, Asgari A 2022 Plasma Processes Polym. 19 2200089Google Scholar

    [33]

    Zhang Y Q, Liu X Y, Fan Y, Guo X Y, Zhou L, Lv Y, Lin J 2016 Nanoscale 8 15281Google Scholar

    [34]

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 22 2400168

    [35]

    Park S Y, Lee C Y, An H R, Kim H, Lee Y C, Park E C, Chun H S, Yang H Y, Choi S H, Kim H S, Kang K S, Park H G, Kim J P, Choi Y, Lee J, Lee H U 2017 Nanoscale 9 9210Google Scholar

    [36]

    Zhang Q, Wang F Q, Liu J L, Wang R Y, Ma Y P, Xia F F, Qiu Y Y, Zeng L W, Xu S F, Zhong X X 2024 Nano Lett. 24 13819Google Scholar

    [37]

    Weerasinghe J, Scott J, Deshan A D K, Chen D, Singh A, Sen S, Sonar P, Vasilev K, Li Q, Ostrikov K 2022 Adv. Mater. Technol. 7 2100586Google Scholar

    [38]

    Zhou Z J, Song J B, Nie L M, Chen X Y 2016 Chem. Soc. Rev. 45 6597Google Scholar

    [39]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Processes Polym. 21 2300174Google Scholar

    [40]

    Li C X, Yu C, Wang C F, Chen S 2013 J. Mater. Sci. 48 6307Google Scholar

    [41]

    Thakur M K, Fang C Y, Yang Y T, Effendi T A, Roy P K, Chen R S, Ostrikov K K, Chiang W H, Chattopadhyay S 2020 ACS Appl. Mater. Interfaces 12 28550Google Scholar

    [42]

    Kurniawan D, Anjali B A, Setiawan O, Ostrikov K K, Chung Y G, Chiang W H 2022 ACS Appl. Mater. Interfaces 14 1670Google Scholar

  • [1] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, doi: 10.7498/aps.70.20210908
    [2] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, doi: 10.7498/aps.70.20210455
    [3] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, doi: 10.7498/aps.68.20191121
    [4] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, doi: 10.7498/aps.68.20181797
    [5] Sun Feng-Nan, Feng Lu, Bu Jia-He, Zhang Jing, Li Lin-An, Wang Shi-Bin. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries. Acta Physica Sinica, doi: 10.7498/aps.68.20182279
    [6] Yi You-Gen, Wang Yu-Ying, Hu Qi-Feng, Zhang Yan-Bin, Peng Yong-Yi, Lei Hong-Wen, Peng Li-Ping, Wang Xue-Min, Wu Wei-Dong. Structural and photoluminescence characteristics of ZnCdO/ZnO single quantum well. Acta Physica Sinica, doi: 10.7498/aps.65.057802
    [7] Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial. Acta Physica Sinica, doi: 10.7498/aps.64.247803
    [8] Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.64.235201
    [9] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, doi: 10.7498/aps.64.046802
    [10] Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang. Influence of interfacial electron transfer on fluorescence blinking of quantum dots. Acta Physica Sinica, doi: 10.7498/aps.63.167302
    [11] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, doi: 10.7498/aps.63.027801
    [12] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, doi: 10.7498/aps.61.075212
    [13] Du Ling-Xiao, Hu Lian, Zhang Bing-Po, Cai Xi-Kun, Lou Teng-Gang, Wu Hui-Zhen. Photoluminescence enhancement of colloidal quantum dots embedded in a microcavity. Acta Physica Sinica, doi: 10.7498/aps.60.117803
    [14] Li Gui-Qin. Transport properties of boron-carbon and boron-nitride quantum dot device. Acta Physica Sinica, doi: 10.7498/aps.59.4985
    [15] Liu Yu-Min, Yu Zhong-Yuan, Ren Xiao-Min. Effects of the thickness of spacing layer and capping layer on the strain distribution and wavelength emission of InAs/GaAs quantum dot. Acta Physica Sinica, doi: 10.7498/aps.58.66
    [16] Chen Ding-An, Shen Li, Zhang Jia-Yu, Cui Yi-Ping. Colorimetrical study of colloidal CdSe quantum dots. Acta Physica Sinica, doi: 10.7498/aps.56.6340
    [17] Ye Fan, Xie Er-Qing, Li Rui-Shan, Lin Hong-Feng, Zhang Jun, He De-Yan. Field emission properties of diamond-like carbon and carbon nitride films deposited by the electrochemical method. Acta Physica Sinica, doi: 10.7498/aps.54.3935
    [18] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.50.1264
    [19] SI JUN-JIE, YANG QIN-QING, TENG DA, WANG HONG-JIE, YU JIN-ZHONG, WANG QI-MING, GUO LI-WEI, ZHOU JUN-MING. MORPHOLOGY AND PHOTOLUMINESCENCE OF GeSi SELF-ASSEMBLED QUANTUM DOT ON Si(113). Acta Physica Sinica, doi: 10.7498/aps.48.1745
    [20] ZHANG FANG-QING, ZHANG YA-FEI, YANG YING-HU, LI JING-QI, CHEN GUANG-HUA, JIANG XIANG-LIU. PREPARATION OF DIAMOND FILMS BY DC ARC DISCHARGE AND IN SITU MEASUREMENTS OF THE PLASMA BY OPTICAL EMISSION SPECTRA. Acta Physica Sinica, doi: 10.7498/aps.39.1965
Metrics
  • Abstract views:  174
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2025
  • Accepted Date:  22 September 2025
  • Available Online:  25 September 2025
  • /

    返回文章
    返回
    Baidu
    map