-
Due to its unique physical and chemical properties, hydrogen plasma is the preferred gas for cleaning reaction chambers. For better understanding of the transport and diffusion mechanism in hydrogen plasma, this paper presents a two-dimensional fluid model by COMSOL simulation software, and systematically investigates the characteristics of radio-frequency inductively coupled remote hydrogen plasma sources under varying discharge and geometric parameters. The results show that input power primarily affects electron density rather than electron temperature. This phenomenon may be due to the balancing mechanism between the ionisation rate and the loss rate in steady state discharges. The pressure has the opposite effect on the plasma in the driven and spatial afterglow regions. As the pressure rises, the electron density in the driven region increases gradually, while the electron density in the spatial afterglow region decreases gradually. This may be due to the shift from non-local to local electron kinetics as the pressure rises. Increasing input power effectively enhances hydrogen radical density and diffusion flux, suggesting that high power facilitates the transport of hydrogen radicals into the spatial afterglow region. However, elevating operating pressure has a similar effect while reducing hydrogen radical density in the spatial afterglow region. Furthermore, under fixed discharge conditions, increasing geometric parameters appropriately promotes the generation of higher and more uniform hydrogen radical densities within the afterglow region.
-
[1] Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如, 高飞, 王友年 2021 70 095206]
[2] Zhao M L, Xing S Y, Tang W, Zhang Y R, Gao F, Wang Y N 2024 Acta Phys. Sin. 73 215201 (in Chinese) [赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年 73 215201]
[3] Yamada Y, Yamada T, Tasaka S and Inagaki N 1996 Macromolecules 29 4331
[4] Lucovsky G, Richard P D, Tsu D V, Lin S Y and Markunas R J 1986 J. Vac. Sci. Technol. A 4 681
[5] Guo Y N, Ong T M B and Xu S Y 2019 Appl. Surf. Sci. 487 146
[6] Pae J Y, Medwal R, Vas J V, Matham M V and Rawat R S 2019 J. Vac. Sci. Technol. B 37 041201
[7] Kim B, Lee N, Lee J, Park T, Park H, Kim Y, Jin C, Lee D, Kim H and Jeon H 2021 Appl. Surf. Sci. 541 148482
[8] Claflin B, Grzybowski G J, Ware M E, Zollner S and Kiefer A M 2020 Front. Mater. 7 44
[9] Erwine P, Camille P E, Laurène Y, Gaspard T and Sylvain D 2019 J. Vac. Sci. Technol. A 37 040601
[10] Volynets V, Barsukov Y, Kim G, Jung J E, Nam S K, Han K, Huang S and Kushner M J 2020 J. Vac. Sci. Technol. A 38 023007
[11] Huang S, Volynets V, Hamilton J R, Nam S K, Song I C, Lu S Q, Tennyson J and Kushner M J 2018 J. Vac. Sci. Technol. A 36 021305
[12] Yang K C, Shin Y J, Tak H W, Lee W, Lee S B and Yeom G Y 2019 Vacuum 168 108802
[13] Wang P Y, Xing S Y, Han D M, Zhang Y R, Li Y, Zhou C, Gao F and Wang Y N 2024 Plasma Sci. Technol. 26 125401
[14] Li H, Liu Y, Zhang Y R, Gao F and Wang Y N 2017 J. Appl. Phys. 121 233302
[15] Tsankov T, Kiss’ovski Z, Djermanova N and Kolev S 2006 Plasma Process. Polym. 3 151
[16] Gangoli S P, Johnson A D, Fridman A A, Pearce R V, Gutsol A F and Dolgopolsky A 2007 J. Phys. D: Appl. Phys. 40 5140
[17] Zhang A X, Lee M Y, Lee H W, Moon H J and Chung C W 2021 Plasma Sources Sci. Technol. 30 025009
[18] Van Herpen M M J W, Klunder D J W, Soer W A, Moors R and Banine V 2010 Chem. Phys. Lett. 484 197
[19] Pachecka M, Sturm J M, van de Kruijs R W E, Lee C J and Bijkerk F 2016 AIP Adv. 6 075222
[20] Braginsky O V, Kovalev A S, Lopaev D V, Malykhin E M, Rakhimova T V, Rakhimov A T, Vasilieva A N, Zyryanov S M, Koshelev K N, Krivtsun V M, van Kaampen M and Glushkov D 2012 J. Appl. Phys. 111 093304
[21] Maffini A, Uccello A, Dellasega D and Passoni M 2016 Nucl. Fusion 56 086008
[22] Sporre J, Lofgren R E, Ruzic D N et al. 2011 Proc. SPIE Extreme Ultraviolet (EUV) Lithography II 796929
[23] Wang S S, Ye Z B, Wu A D, Gao T, Wei J J and Gou F J 2025 J. Alloy. Compd. 1030 180912
[24] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
[25] Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J and Wang Y N 2023 Plasma Sci. Technol. 25 105601
[26] Lishev S T et al. 2011 J. Plasma Phys. 77 469
[27] Lishev S et al. 2018 Plasma Sources Sci. Technol. 27 125008
[28] Smirnov B M 2015 Theory of Gas Discharge Plasma (Cham: Springer International Publishing)
[29] Zhang Y, Yang W, Lyu X Y, Gao F and Wang Y N 2025 J. Appl. Phys. 138 023301.
[30] Xing S Y, Gao F, Zhang Y R, Zhao M, Lei G J and Wang Y N 2024 Nucl. Fusion 64 056015
[31] Petrov G M and Giuliani J L 2001 J. Appl. Phys. 90 619
[32] Janev R K, Reiter D and Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Jülich: Forschungszentrum Zentralbibliothek)
[33] Yoon J S et al. 2008 J. Phys. Chem. Ref. Data 37 913
[34] Janev R K et al. 1989 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer)
[35] Hjartarson A T, Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008
[36] Celiberto R et al. 2001 At. Data Nucl. Data Tables 77 161
[37] Celiberto R, Capitelli M and Laricchiuta A 2002 Phys. Scr. T96 32
[38] Bowers M T, Elleman D D and King J 1969 J. Chem. Phys. 50 4787
[39] Matveyev A A and Silakov V P 1995 Plasma Sources Sci. Technol. 4 606
[40] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368
[41] Booth J P and Sadeghi N 1991 J. Appl. Phys. 70 611
[42] Gorse C et al 1987 Chem. Phys. 117 177
[43] Averkin S N, Gatsonis N A and Olson L 2015 IEEE Trans. Plasma Sci. 43 1926
[44] Hiskes J R and Karo A M 1989 Appl. Phys. Lett. 54 508
[45] Boeuf J P et al 2011 Plasma Sources Sci. Technol. 20 015002
Metrics
- Abstract views: 28
- PDF Downloads: 1
- Cited By: 0









下载: