Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Full matrix electromechanical properties and applications to ultrasonic transducer of textured (Ba, Ca)(Zr, Ti)O3 ceramics

LIU Yingchun ZHU Yuanbo ZHANG Hongjun LIU Haishun CAO Wenwu

Citation:

Full matrix electromechanical properties and applications to ultrasonic transducer of textured (Ba, Ca)(Zr, Ti)O3 ceramics

LIU Yingchun, ZHU Yuanbo, ZHANG Hongjun, LIU Haishun, CAO Wenwu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultrasound diagnostic technology demonstrates unique clinical value in cardiovascular monitoring, precise ophthalmic diagnosis, and interventional therapy, and possesses the advantages of high efficiency, safety, non-invasiveness, and significant cost-effectiveness. The performance of transducer that is a core component of ultrasound imaging systems directly determines the image resolution. Piezoelectric materials, essential for the acoustic-to-electric energy conversion, exhibit piezoelectric and electromechanical properties that obviously affect the transducer sensitivity and bandwidth. Although commercial Pb(Zr,Ti)O3 (PZT) ceramics offer excellent properties, the toxicity of the lead element in theentire material preparation, service life, and disposal process pose significant risks to human health and ecosystems.The [001]C-textured lead-free (Ba,Ca)(Zr,Ti)O3 (BCZT) ceramics are fabricated by the template grain growth (TGG) method. The materials demonstrate high piezoelectricity, elevated sound velocity, and low dielectric constant, making them highly suitable for developing high-sensitivity and large-bandwidth ultrasonic transducers. However, critical limitations are also existent: 1) the absence of full-matrix electromechanical properties such as dielectric constant εij, piezoelectric coefficient dij, and elastic constant sij essential for device design, and 2) the restriction of electromechanical coupling coefficient k calculations to extreme aspect ratios. The failure to accurately simulate the evolution of k under finite aspect ratio severely limits the practical applications.To overcome such challenges, highly [00l]C-oriented textured BCZT ceramics (texture degree f00l~98%) are synthesized via TGG. By combining resonance-antiresonance spectroscopy with pulse-echo ultrasonic measurements, the dataset of complete full-matrix electromechanical property is established for the first time. The textured BCZT ceramics exhibit strong anisotropic Poisson’s ratios. Their piezoelectric coefficient d33 (605 pC/N) and electromechanical coupling coefficient k33 (0.73) are comparable to those of PZT-5H ceramics, while the piezoelectric voltage constant g33 (23.6 × 10–3 V·m–1·Pa–1) is 20 % higher than that of PZT-5H.By using the piezoelectric constitutive equations, a theoretical model is developed to predict k at an arbitrary aspect ratio. Based on this model developed, the 1-3 type BCZT composite transducer with high sensitivity and wide frequency band is designed and fabricated, exhibiting a center frequency of ~3.0 MHz. The BCZT transducer achieves an insertion loss of –33.0 dB. The –6 dB bandwidth is as high as 107.1%, which is superior to the ultrasonic transducer made of PZT-5H composite reported in the literature. This work not only provides complete electromechanical parameters for lead-free piezoelectric device applications but also lays a theoretical and technical foundation for developing high-performance, eco-friendly ultrasonic diagnostic equipments.
  • 图 1  1-3型压电复合材料的制备流程图

    Figure 1.  Fabrication procedures of 1-3 piezoelectric composites.

    图 2  测定全矩阵参数的织构BCZT陶瓷的振子类型

    Figure 2.  Samples for full matrix constant determination of BCZT textured ceramics.

    图 3  (a) 无取向陶瓷和织构陶瓷的XRD图; (b) 织构陶瓷的断面SEM图

    Figure 3.  (a) XRD patterns of random and textured ceramics; (b) cross-sectional SEM image of textured ceramics.

    图 4  织构BCZT陶瓷的(a) EBSD图, (b) (001)极图和(c) (001)反极图

    Figure 4.  (a) EBSD map, (b) (001) pole figure, and (c) (001) inverse pole figure of the textured BCZT ceramic.

    图 5  圆柱型压电振子的示意图

    Figure 5.  Schematic plot of the cylindrical piezoelectric resonator.

    图 6  织构BCZT陶瓷与PZT-5H陶瓷有效机电耦合系数keff对长径比G的依赖性

    Figure 6.  Comparison of G dependence of electromechanical coupling coefficient keff between textured BCZT and PZT-5H ceramics.

    图 7  1-3型织构BCZT和PZT-5H压电复合材料的性能参数对比

    Figure 7.  Property comparison between 1-3 textured BCZT and PZT-5H piezoelectric composites.

    图 8  织构BCTZ超声换能器时域谱与频域谱

    Figure 8.  Pulse-echo waveform and frequency spectrum of textured BCTZ ultrasonic transducers.

    表 1  压电振子的机电参数对应关系

    Table 1.  Corresponding electromechanical parameters of piezoelectric vibrators.

    压电振子
    类型
    尺寸/mm测量参数计算参数
    LTE12.01×2.46×0.32$ s_{{11}}^{\text{E}} $, $ {k_{31}} $, $ \varepsilon _{{33}}^{\text{T}} $, $ \varepsilon _{33}^{\text{S}} $$ {d_{31}} $
    LE0.39×0.40×2.17$ s_{{33}}^{\text{D}} $, $ {k_{33}} $$ s_{{33}}^{\text{E}} $, $ {d_{33}} $
    TSE0.32×2.19×5.43$ c_{{44}}^{\text{D}} $, $ {k_{15}} $, $ \varepsilon _{{11}}^{\text{T}} $, $ \varepsilon _{{11}}^{\text{S}} $$ {d_{15}} $, $ c_{{44}}^{\text{E}} $
    TE0.62×6.52×6.50$ c_{{33}}^{\text{D}} $, $ {k_{\text{t}}} $, $ \varepsilon _{{33}}^{\text{S}} $, $ \varepsilon _{{33}}^{\text{T}} $$ c_{{33}}^{\text{E}} $
    DownLoad: CSV

    表 2  陶瓷样品声速和弹性常数之间的关系

    Table 2.  Ultrasonic velocities and elastic stiffness constants of ceramic samples.

    波传播方向[001][001][100][100][100]
    声速$ V_1^{\left[ {001} \right]} $$ V_{\text{s}}^{\left[ {001} \right]} $$ V_1^{\left[ {100} \right]} $$ V_{{\text{s}} \bot }^{\left[ {100} \right]} $$ V_{{\text{s}}\parallel }^{\left[ {{100}} \right]} $
    弹性刚度常数$ c_{{33}}^{\text{D}} $$ c_{{44}}^{\text{E}} $$ c_{{11}}^{\text{E}} $$ c_{{66}}^{\text{E}} $$ c_{{44}}^{\text{D}} $
    DownLoad: CSV

    表 3  织构BCZT陶瓷与PZT-5H陶瓷(来自Comsol数据库和参考文献[17])的弹性常数

    Table 3.  Elastic constants of textured BCZT ceramic compared to the PZT-5H ceramic (from the Comsol library and Ref. [17]).

    BCZT PZT-5H
    弹性刚度
    常数
    $c_{{11}}^{\text{E}}$/(1010 N·m–2)13.912.7
    $c_{{12}}^{\text{E}}$/(1010 N·m–2)6.98.0
    $c_{{13}}^{\text{E}}$/(1010 N·m–2)8.78.5
    $c_{{33}}^{\text{E}}$/(1010 N·m–2)11.011.7
    $c_{{44}}^{\text{E}}$/(1010 N·m–2)4.72.3
    $c_{{66}}^{\text{E}}$/(1010 N·m–2)2.92.3
    $c_{{11}}^{\text{D}}$/(1010 N·m–2)14.213.0
    $c_{{12}}^{\text{D}}$/(1010 N·m–2)7.28.3
    $c_{{13}}^{\text{D}}$/(1010 N·m–2)7.87.2
    $c_{{33}}^{\text{D}}$/(1010 N·m–2)13.715.7
    $c_{{44}}^{\text{D}}$/(1010 N·m–2)6.34.2
    $c_{{66}}^{\text{D}}$/(1010 N·m–2)2.92.4
    弹性柔顺
    常数
    $s_{{11}}^{\text{E}}$/(10–12 m2·N–1)14.216.5
    $s_{{12}}^{\text{E}}$/(10–12 m2·N–1)–0.1–4.8
    $s_{{13}}^{\text{E}}$/(10–12 m2·N–1)–11.2–8.5
    $s_{{33}}^{\text{E}}$/(10–12 m2·N–1)26.720.7
    $s_{{44}}^{\text{E}}$/(10–12 m2·N–1)21.443.5
    $s_{{66}}^{\text{E}}$/(10–12 m2·N–1)34.142.6
    $s_{{11}}^{\text{D}}$/(10–12 m2·N–1)11.114.0
    $s_{{12}}^{\text{D}}$/(10–12 m2·N–1)–3.1–7.3
    $s_{{13}}^{\text{D}}$/(10–12 m2·N–1)–4.5–3.1
    $s_{{33}}^{\text{D}}$/(10–12 m2·N–1)12.49.0
    $s_{{44}}^{\text{D}}$/(10–12 m2·N–1)16.023.7
    $s_{{66}}^{\text{D}}$/(10–12 m2·N–1)34.142.6
    DownLoad: CSV

    表 4  织构BCZT与PZT-5H陶瓷(来自Comsol数据库和参考文献[17])的压电和介电常数

    Table 4.  Piezoelectric and dielectric constants of textured BCZT ceramic compared to the PZT-5H ceramic (from the Comsol library and Ref.[17]).

    BCZT PZT-5H
    压电常数${e_{15}}$/(C·m–2)16.217.0
    ${e_{31}}$/(C·m–2)–5.8–6.6
    ${e_{33}}$/(C·m–2)17.823.3
    ${d_{15}}$/(10–12C·N–1)347741
    ${d_{31}}$/(10–12C·N–1)–281–274
    ${d_{33}}$/(10–12C·N–1)605593
    ${g_{15}}$/(10–3 V·m–1·Pa–1)15.626.8
    ${g_{31}}$/(10–3 V·m–1·Pa–1)–11.0–9.1
    ${g_{33}}$/(10–3 V·m–1·Pa–1)23.619.7
    $ {h_{15}} $/(108V·m–1)9.811.3
    $ {h_{31}} $/(108V·m–1)–4.9–5.1
    $ {h_{33}} $/(108V·m–1)15.018.0
    机电耦合
    系数
    $ {k_{15}} $0.500.51
    $ {k_{31}} $0.470.39
    $ {k_{33}} $0.730.75
    ${k_{\text{t}}}$0.440.51
    ${k_{\text{p}}}$0.630.65
    介电常数$ \varepsilon _{{11}}^{\text{S}} $/$ {\varepsilon _0} $18711704
    $ \varepsilon _{{33}}^{\text{S}} $/$ {\varepsilon _0} $13411434
    $ \varepsilon _{{11}}^{\text{T}} $/$ {\varepsilon _0} $25073130
    $ \varepsilon _{{33}}^{\text{T}} $/$ {\varepsilon _0} $28923400
    $\beta _{{11}}^{\text{S}}$/(10–4/$ {\varepsilon _0} $)5.35.9*
    $\beta _{{33}}^{\text{S}}$/(10–4/$ {\varepsilon _0} $)7.57.0*
    $\beta _{{11}}^{\text{T}}$/(10–4/$ {\varepsilon _0} $)4.03.2*
    $\beta _{{33}}^{\text{T}}$/(10–4/$ {\varepsilon _0} $)3.52.9*
    *基于表格中PZT-5H的数据, 根据公式$ {\beta _{ij}} = 1 / {\varepsilon _{ij}} $计算得出.
    DownLoad: CSV

    表 5  基于织构BCZT与其他材料的超声换能器性能对比

    Table 5.  Performance compassion of ultrasonic transducers based on textured BCZT and other materials.

    类型中心频率
    /MHz
    –6 dB带
    宽/%
    插入损耗
    /dB
    织构BCZT3.0107.1–33.0
    PZT-5H[25]3.2674.5–32.9
    PMN-PT单晶[26]2.5256.35–35.78
    PMN-PT单晶[27]6.9102–32.3
    PIN-PMN-PT单晶[28]1.9594.6–21.1
    DownLoad: CSV
    Baidu
  • [1]

    Rathod V T 2020 Sensors 20 4051Google Scholar

    [2]

    郑海荣, 邱维宝, 王丛知, 牛丽丽, 严飞, 蔡飞燕, 邹超, 隆晓菁, 乔阳紫, 肖杨 2020 中国科学: 生命科学 50 1256Google Scholar

    Zheng H R, Qiu W B, Wang C Z, Niu L L, Yan F, Cai F Y, Zou C, Long X J, Qiao Y Z, Xiao Y 2020 Sci. Sin. Vitae. 50 1256Google Scholar

    [3]

    Ho Y J, Huang C C, Fan C H, Liu H L, Yeh C K 2021 Cell. Mol. Life Sci. 78 6119Google Scholar

    [4]

    陈小明, 王明焱, 唐木智明, 李国荣 2021 70 197701Google Scholar

    Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar

    [5]

    Scheidemann C, Bornmann P, Littmann W, Hemsel T 2025 Actuators 14 55Google Scholar

    [6]

    徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲 2020 69 127705

    Xu Z, Lou L Y, Zhao C L, Tang H Z, Liu Y X, Li Z, Qi X M, Zhang B P, Li J F, Gong W, Wang K 202 Acta Phys. Sin. 69 127705

    [7]

    Panda P K, Sahoo B, Thejas T S, Krishna M 2022 J. Electron. Mater. 51 938Google Scholar

    [8]

    Zou J Z, Wei T X, Song M, Zeng S R, Zhou K C, Zhang Y, Zhang S J, Zhang D 2025 Adv. Funct. Mater. 35 2425080Google Scholar

    [9]

    Xu M H, Hua K H, Di B, Zheng Y, Zeng Q, Gao P H, Xi X 2024 Ceram. Int. 50 54557Google Scholar

    [10]

    Yang D Y, Wu X J, Lv X, Wen L J, Yin J, Wu J G 2025 J. Eur. Ceram. Soc. 45 117240Google Scholar

    [11]

    Qiu X Y, Wu C, Tan D Q, Liang R H, Liu C, Ma Y C, Zhang X X, Wei S Y, Zhang J W, Tan Z, Wang Z P, Lv X, Wu J G 2025 Nat. Commun. 16 2894Google Scholar

    [12]

    Safari A, Zhou Q, Zeng Y, Leber J D 2023 Jpn. J. Appl. Phys. 62 SJ0801Google Scholar

    [13]

    Liu Y C, Chang Y F, Li F, Yang B, Sun Y, Wu J, Zhang S T, Wang R X, Cao W W 2017 ACS Appl. Mater. Interfaces 9 29863Google Scholar

    [14]

    Liu Y C, Zhang H J, Shi W M, Wang Q, Jiang G C, Yang B, Cao W, W Tan J B 2022 J. Mater. Sci. Technol. 117 207Google Scholar

    [15]

    American National Standards Institute 1988 IEEE Standard on Piezoelectricity 176-1987 (New York: IEEE

    [16]

    Chen W G, Wen F, Wan Y, Li L L, Li Y, Zhou Y 2024 J. Adv. Dielect. 14 2350031Google Scholar

    [17]

    Yang S, Qiao L, Wang J, Wang M W, Gao X Y, Wu J, Li J L, Xu Z, Li F 2022 J. Appl. Phys. 131 124104Google Scholar

    [18]

    Xiao A L, Tang L G, Sun S S, Wu S J, Wu X Y, Luo W Y 2023 IEEE Trans. Instrum. Meas. 72 6007915

    [19]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [20]

    Kou Q W, Yang B, Lei H B, Yang S, Zhang Z R, Liu L J, Xie H, Sun Y, Chang Y F, Li F 2023 ACS Appl. Mater. Inter. 15 37706Google Scholar

    [21]

    Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J, Li F 2023 Science 380 87Google Scholar

    [22]

    Amorín H, Chateigner D, Holc J, Kosec M, Algueró M, Ricote J 2012 J. Am. Ceram. Soc. 95 2965Google Scholar

    [23]

    Poterala S F, Trolier-McKinstry S, Meyer R J, Messing G L 2011 J. Appl. Phys. 110 014105Google Scholar

    [24]

    Kim M, Kim J, Cao W W 2005 Appl. Phys. Lett. 87 132901Google Scholar

    [25]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [26]

    Xu Y B, Zhu K, Sun E W, Ma J P, Li Y L, Zheng H S, Zhang R, Yang B, Cao W W 2024 Sens. Actuators A Phys. 369 115196Google Scholar

    [27]

    Hang H, Jiang X, Lin D, Wang F, Wang X, Luo H 2023 Curr. Appl. Phys. 47 1Google Scholar

    [28]

    Zhou D, Cheung K F, Chen Y, Lau S T, Zhou Q F, Shung K K, Luo H S, Dai J, Chan H L W 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 477Google Scholar

    [29]

    Wang W, Or S W, Yue Q W, Zhang Y Y, Jiao J, Leung C M, Zhao X Y, Luo H S 2013 Sens. Actuators A Phys. 196 70Google Scholar

  • [1] WANG Yi, CHEN Cheng, LIN Shuyu. An ultrasonic transducer for vibration mode conversion of wedge-shaped structure of acoustic black hole. Acta Physica Sinica, doi: 10.7498/aps.74.20241326
    [2] LIN Jiyan, LI Yao, CHEN Cheng, LIU Weidong, LIN Shuyu, GUO Linwei, XU Jie. Surface and defect controlled high power piezoelectric ultrasonic transducers. Acta Physica Sinica, doi: 10.7498/aps.74.20250047
    [3] LIN Jiyan, LI Yao, CHEN Cheng, LIN Shuyu, GUO Linwei, XU Jie. Piezoelectric Ultrasonic Transducers with Columnar and Acoustic Surface Structures. Acta Physica Sinica, doi: 10.7498/aps.74.20250901
    [4] YE Wenxu, JIANG Hao, WANG Yi, LIN Shuyu. Sandwich-type flexural vibration ultrasonic transducer based on the structure of acoustic black hole. Acta Physica Sinica, doi: 10.7498/aps.74.20250767
    [5] Di Miao, He Xiang, Liu Ming-Zhi, Yan Shan-Shan, Wei Long-Long, Tian Ye, Yin Guan-Jun, Guo Jian-Zhong. Sound field optimization and particle trapping of confocal ultrasonic transducer. Acta Physica Sinica, doi: 10.7498/aps.72.20221547
    [6] Lin Ji-Yan, Lin Shu-Yu. Large-scale piezoelectric ultrasonic transducers with tubular near-period phononic crystal point defect structure. Acta Physica Sinica, doi: 10.7498/aps.72.20230195
    [7] Dong Yi-Lei, Chen Cheng, Lin Shu-Yu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method. Acta Physica Sinica, doi: 10.7498/aps.72.20222110
    [8] Chen Xiao-Ming, Li Guo-Rong. Large electrostrictive coefficients of BaTiO3-based lead-free ceramics. Acta Physica Sinica, doi: 10.7498/aps.71.20220451
    [9] Chen Cheng, Lin Shu-Yu. A new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material. Acta Physica Sinica, doi: 10.7498/aps.70.20201352
    [10] Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke. Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica, doi: 10.7498/aps.69.20200277
    [11] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, doi: 10.7498/aps.69.20200540
    [12] Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics. Acta Physica Sinica, doi: 10.7498/aps.69.20200288
    [13] Tang Li-Guo. Mode identification via temperature variation in resonant ultrasonic spectroscopy technique for piezoelectric material. Acta Physica Sinica, doi: 10.7498/aps.66.027703
    [14] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, doi: 10.7498/aps.61.197703
    [15] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, doi: 10.7498/aps.57.5962
    [16] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, doi: 10.7498/aps.55.3711
    [17] Zhao Ming-Lei, Wang Chun-Lei, Wang Jin-Feng, Chen Hong-Cun, Zhong Wei-Lie. Enhanced piezoelectric properties of (Bi0.5Na0.5)1-xBax TiO3 lead-free ceramics by sol-gel method. Acta Physica Sinica, doi: 10.7498/aps.53.2357
    [18] WEI CHONG-DE, LIU ZUN-XIAO, LAN JIAN, SUN YUN-XI, GAN ZI-ZHAO, REN HONG-TAO, XIAO LINO, HE QING. MAGNETIC PROPERTIES OF A YBCO CRYSTAL PREPARED BY MELT-TEXTURED GROWTH METHOD. Acta Physica Sinica, doi: 10.7498/aps.40.1694
    [19] YING CHONG-FU, LI MING-XIAN, ZHONG GAO-QI, LIU XIAN-DUO, YANG YU-RUI. A SCHEME TO CONTROL THE FIRST-SECOND CYCLE AMPLITUDE RATIO OF TRANSDUCERS FOR ULTRASONIC MEASUREMENTS. Acta Physica Sinica, doi: 10.7498/aps.30.91
    [20] ULTRASONIC PROCESSING RESEARCH GROUP. A BROAD BAND PIEZOELECTRIC SANDWICH TRANSDUCER. Acta Physica Sinica, doi: 10.7498/aps.25.85
Metrics
  • Abstract views:  354
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2025
  • Accepted Date:  15 July 2025
  • Available Online:  21 July 2025
  • /

    返回文章
    返回
    Baidu
    map