-
In recent years, polar magnets M2Mo3O8 (M: 3d transition metal) have emerged as a research focus in condensed matter physics and materials science due to their unique crystal structures, multiple continuous magnetoelectric-coupled state transitions, and potential applications. Notably, Co2Mo3O8 exhibits a significant second-order nonlinear magnetoelectric coupling effect in its ground state, corresponding to a unique microscopic magnetoelectric coupling mechanism and practical value. In this work, based on a molecular field phenomenological model, two distinct antiferromagnetic sublattices for the Co2Mo3O8 system constructed and the temperature-dependent variations of its spontaneous magnetic moment, spin-induced ferroelectric polarization, first-order linear magnetoelectric coupling coefficient, and second-order nonlinear magnetoelectric coupling coefficient are presented. Particularly, the parameters t = –1 and o = –0.96 indicate distinct exchange energies between the magnetic sublattices associated with tetrahedron (Cot) and octahedron (Coo). The Co2+ ions in these two sublattices, which are characterized by different molecular field coefficients, synergistically mediate a spin-induced spontaneous polarization of PS~0.12 μC/cm2 through the exchange striction mechanism and p-d hybridization mechanism in Co2Mo3O8. In addition, the significant second-order magnetoelectric coupling effect with a coefficient peaking at 70 × 10–19 s/A near the TN in Co2Mo3O8, with this coefficient being significantly larger than those of isostructural Fe2Mo3O8 (1.81 × 10–28 s/A) and Mn2Mo3O8, implies that this enhancement primarily arises from the weaker inter-sublattice antiferromagnetic exchange between its two sublattices, leading to a stabilizes metastable spin configuration. This also indicates that the Co2Mo3O8 system possesses stronger irreversibility stability and exhibits a pronounced magnetoelectric diode effect, providing a solid theoretical and computational foundation for developing magnetoelectric diodes.
-
Keywords:
- polar magnet /
- magnetoelectric coupling effect /
- mean-field approximation /
- exchange striction mechanism
-
图 2 (a), (b) 基于分子场近似, Cot和Coo 两个不同配位中Co2+自旋磁矩和总磁矩随温度的变化; (c), (d) 不同配位中Co2+的磁化率和总的磁化率随温度的关系; (e), (f) 磁矩对温度的微分和磁比热随温度的变化
Figure 2. (a), (b) Temperature-dependent variations of the Co2+ spin magnetic moment and total magnetic moment in two distinct coordination environments (Cot and Coo); (c), (d) temperature-dependent magnetic susceptibility and the total magnetic susceptibility; (e), (f) temperature derivative of the magnetic moment and temperature-dependent magnetic specific heat based on the molecular field approximation.
图 3 基于分子场近似, 得到的Co2Mo3O8 (a) χimj (i, j = t, o)、(b) 一阶线性磁电耦合系数、(c) 自旋诱导的铁电极化和(d) 二阶线性磁电耦合系数随温度的变化
Figure 3. Temperature-dependent variations of (a) χimj (i, j = t, o), (b) first-order linear magnetoelectric coupling coefficient, (c) spin-induced ferroelectric polarization, and (d) second-order linear magnetoelectric coupling coefficient for Co2Mo3O8 based on the molecular field approximation.
-
[1] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, and Tokura Y 2003 Nature 426 55
Google Scholar
[2] Cheong S, Mostovoy M 2007 Nat. Mater. 6 13
Google Scholar
[3] Spaldin N, Ramesh R 2019 Nat. Mater. 18 203.
Google Scholar
[4] Lu C L, Wu M H, Lin L, Liu J M 2019 Nat. Sci. Rev. 6 653
Google Scholar
[5] Dong S, Liu J M, Cheong S W, and Ren Z 2015 Adv. Phys. 64 519
Google Scholar
[6] 南策文 2015 中国科学: 技术科学 45 339
Google Scholar
Nan C W 2015 Sci. Sin. : Tech. 45 339
Google Scholar
[7] 刘俊明, 南策文 2014 物理 43 88
Google Scholar
Liu J M, Nan C W 2014 Physics 43 88
Google Scholar
[8] Li Z W, Zhang S Y, Li Q S, Liu H 2023 J. Adv. Dielect. 13 2345002
Google Scholar
[9] Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, and Wang J 2024 J. Adv. Dielect. 14 2440002
Google Scholar
[10] Khade V, and Wuppulluri M 2024 J. Adv. Dielect. 14 2340001
Google Scholar
[11] Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, and Zhang Q 2023 Nat. Phys. 19 1868
Google Scholar
[12] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, and Ramesh R 2003 Science 299 1719
Google Scholar
[13] Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, and Cheong S W 2015 Sci. Rep. 5 12268
Google Scholar
[14] Spaldin N A, and Ramesh R 2019 Nat. Mater. 18 203
Google Scholar
[15] Kurumaji T, Ishiwata S, and Tokura Y 2015 Phys. Rev. X 5 031034
[16] Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J M, Dong S, Lu C 2023 Phys. Rev. Lett. 131 136701
Google Scholar
[17] Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, Liu J M 2019 Phys. Rev. B 100 134112
Google Scholar
[18] Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, Cheong S 2015 Phys. Rev. Lett. 115 137201
Google Scholar
[19] Rivera J P 1994 Ferroelectrics 161 165
Google Scholar
[20] Kurumaji T, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 045142
Google Scholar
[21] Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405(R
[22] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507
Google Scholar
Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507
Google Scholar
[23] 申见昕, 尚大山, 孙阳 2018 67 127501
Google Scholar
Shen J, Shang D, Sun Y 2018 Acta Phys. Sin. 67 127501
Google Scholar
[24] Yu S, Gao B, Kim J, Cheong S W, Man M, Madéo J, Dani K, Talbayev D 2018 Phys. Rev. Lett. 120 037601
Google Scholar
[25] Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang , and Liu J M 2022 Phys. Rev. B 105 064108
[26] Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, Kézsmárki I 2022 npj Quantum Mater. 7 1
Google Scholar
[27] McAlister S, and Strobel P 1983 J. Magn. Magn. 30 340
Google Scholar
[28] Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, Liu J M 2021 Phys. Rev. B 103 014112
Google Scholar
[29] Schmid H 1973 Int. J. Magn. 4 337
[30] Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, Yogesh Singh 2011 Phys. Rev. B 84 094445
Google Scholar
[31] Solovyev I V, Streltsov S V 2019 Phys. Rev. Matter. 3 114402
[32] Taniguchi K, Abe N, Takenobu T, Iwasa Y, T. Arima 2006 Phys. Rev. Lett. 97 097203
Google Scholar
[33] Balents L 2010 Nature 464 199
Google Scholar
[34] Joshua S J 1984 Aust. J. Phys. 37 305
Google Scholar
[35] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 72 157501
Google Scholar
Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023 Acta Phys. Sin. 72 157501
Google Scholar
[36] 宋骁, 高兴森, 刘俊明 2018 67 157512
Google Scholar
Song X, Gao X, Liu J M 2018 Acta Phys. Sin. 67 157512
Google Scholar
[37] Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, and Li X 2025 Phys. Rev. B 111 134423
Google Scholar
[38] Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, and Zhang Y 2024 Nat. Electron. 7 138
Google Scholar
Metrics
- Abstract views: 317
- PDF Downloads: 3
- Cited By: 0