-
The band gap, localization, and waveguide characteristics of phononic crystal structures offer extensive potential applications in transducer field, particularly for circular-hole phononic crystals, which are extensively utilized in research on performance optimization of transducers due to their straightforward structure and easy fabrication. Nonetheless, studies have revealed that the bandgap width of circular-hole phononic crystal structures is directly proportional to their porosity. Typically, a higher porosity leads to enhanced energy localization of elastic waves. However, high porosity implies a narrower distance between circular holes, greatly reducing the mechanical strength of the structure. The introduction of columnar phononic crystal structures solves the problems of high porosity and strict dimensional accuracy requirements in circular-hole phononic crystal structures, providing a new approach for enhancing the performance of piezoelectric ultrasonic transducers. This study employs cylindrical and acoustic surface structures fabricated on the front and rear cover plates of piezoelectric ultrasonic transducers to manipulate the transmission behavior and pathway of sound waves, thereby achieving effective control over coupled vibrations within the transducer. This approach not only solves the problem of uneven amplitude distribution on the radiation surface due to uneven vibration energy transmission but also markedly enhances the displacement amplitude of the transducer’s radiation surface, ultimately enhancing its operational efficiency. The simulation results elucidate the influences of the configuration of these cylindrical and acoustic surface structures on transducer performance. Experimental findings further validate that these structures can effectively improve the performance of piezoelectric ultrasonic transducers. This study provides systematic design theory support for the engineering calculation and optimization of transducers. -
Keywords:
- porous phononic crystals /
- columnar and acoustic surface structures /
- piezoelectric ultrasonic transducers /
- performance optimization
-
图 15 换能器的辐射面位移振幅分布的实验测量 (a) 测试图; (b) 柱状和声学表面结构的压电超声换能器的测量结果; (c) 未优化换能器的测量结果
Figure 15. Experimental measurement of the displacement amplitude distribution of the radiation surface of the transducer: (a) Test chart; (b) measurement results of piezoelectric ultrasonic transducers with columnar and acoustic surface structures; (c) measurement results of the transducer have not been optimized.
表 1 大尺寸换能器的详细参数
Table 1. Detailed parameters of large-sized transducer.
组件名称 材料 形状 上底半径
/mm下底半径
/mm高度
/mm后盖板 Steel AISI
4340 钢等截面
圆柱31 31 30 前盖板 Aluminium
6063-T83圆台 31 50 35 压电陶瓷
圆环(2片)PZT-4 等截面
圆环内径7
外径30内径7
外径308 表 2 (3)式—(6)式中各常数取值
Table 2. The values of the constants in Eqs. (3)—(6).
A B C D (3)式 x为柱高 19651.327 –277.955 11.400 –0.142 x为柱边长 10141.232 2616.509 –221.630 7.083 x为圆柱体孔半径 17511.585 –3.807 4.071 –0.893 x为环槽高度 17405.221 88.233 –26.829 3.145 x为凹槽厚度 17512.152 4.646 –0.732 0.746×10–1 (4)式 y为圆柱体孔半径 17511.585 –3.807 4.071 –0.893 y为环槽高度 17405.221 88.233 –26.829 3.145 (5)式 y1为表面凹槽厚度 2.909×10–4 8.421×10–6 — — (6)式 z为柱高 41.422 4.051 0.022 –0.454×10–2 z为柱边长 –572.671 386.836 –72.945 4.206 z为圆柱体孔半径 87.149 5.651 –0.866 –0.174 z为环槽的高度 91.649 4.283 –1.871 0.221 -
[1] Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533
Google Scholar
[2] Takeda K, Tanaka H, Tsuchiya T, Kaneko S 1998 Ultrasonics 36 75
Google Scholar
[3] Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812
Google Scholar
[4] Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872
Google Scholar
[5] Peters D 1996 J. Mater. Chem. 6 1605
Google Scholar
[6] An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. Manu. 26 559
[7] Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensor. Actuat. A: Phys. 381 116037
Google Scholar
[8] Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812
Google Scholar
[9] Ronda S, Francisco M de E. 2018 Adv. Appl. Ceram. 117 177
Google Scholar
[10] 李照希 2022 博士学位论文 (西安: 西安电子科技大学)
Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University
[11] 秦振杰 2023 硕士学位论文 (太原: 中北大学)
Qin Z J 2023 M. S. Thesis (Taiyuan: North University of China
[12] 张利娟 2022 硕士学位论文 (镇江: 江苏大学)
Zhang L J 2022 M. S. Thesis (Zhenjiang: Jiangsu University
[13] 宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)
Song M X 2020 M. S. Thesis (Beijing: University of Chinese Academy of Sciences
[14] 王燕萍 2023 硕士学位论文 (广州: 广东工业大学)
Wang Y P 2023 M. S. Thesis (Guangzhou: Guangdong University of Technology
[15] 林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 094311
Google Scholar
Lin J Y, Lin S Y, Wang S, Li Y 2021 Sci. Sin. Phys. Mech. Astron. 51 094311
Google Scholar
[16] 李婧 2021 博士学位论文 (太原: 中北大学)
Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China
[17] Wang S, Chen C, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 152 193
Google Scholar
[18] Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640
Google Scholar
[19] 孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378
Sun X Y, Yan Q, Guo X Y 2021 J. Synt. Crys. 50 1378
[20] 程晓茹 2021 硕士学位论文 (兰州: 兰州大学)
Chen X R 2021 M. S. Thesis (Lanzhou: Lanzhou University
[21] 尉浪浪 2023 硕士学位论文 (太原: 中北大学)
Yu L L 2023 M. S. Thesis (Taiyuan: North University of China
[22] 谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)
Tan Z H 2021 M. S. Thesis (Lanzhou: Lanzhou Jiaotong University
[23] 张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96
Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois. Vibr. Cont. 44 96
[24] Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. Cont. 45 674
Google Scholar
[25] Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. Actu. A. Phys. 333 113298
Google Scholar
[26] Dryburgh P , Smith J R , Marrow P , Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171
[27] Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131
Google Scholar
Metrics
- Abstract views: 525
- PDF Downloads: 10
- Cited By: 0









DownLoad: