Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects

CHEN Zhuoyu HUANG Haoliang XUE Qikun

Citation:

Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects

CHEN Zhuoyu, HUANG Haoliang, XUE Qikun
cstr: 32037.14.aps.74.20250331
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, significant progress has been made in the superconductivity of nickelates, with global teams discovering various nickelate superconductors under ambient and high pressure conditions. Research teams in China and USA have independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through different technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese teams have synthesized pure-phase bilayer nickelate films with atomically smooth surfaces by using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. After in situ strong oxidation processing of surface, surface-sensitive measurements, such as ARPES, can be conducted on these atomically flat films to reveal the electronic structure of the superconducting phase, and further in-depth experimental research on superconducting mechanisms is expected. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system has the potential to achieve higher superconducting transition temperatures.
      Corresponding author: CHEN Zhuoyu, chenzhuoyu@sustech.edu.cn ; XUE Qikun, xueqk@sustech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2024YFA1408101, 2022YFA1403101), the National Natural Science Foundation of China (Grant Nos. 92265112, 12374455, 52388201), the Quantum Science Strategic Initiative of Guangdong Province, China (Grant Nos. GDZX2401004, GDZX2201001), the Municipal Funding Co-Construction Program of Shenzhen, China (Grant Nos. SZZX2401001, SZZX2301004), and the Science and Technology Program of Shenzhen, China (Grant No. KQTD20240729102026004).
    [1]

    Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    McMillan W 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189Google Scholar

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1Google Scholar

    [6]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [7]

    Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [11]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002Google Scholar

    [12]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [13]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [14]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [15]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [16]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [17]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879Google Scholar

    [20]

    Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10Google Scholar

    [21]

    Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117Google Scholar

    [22]

    Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [23]

    Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109Google Scholar

    [24]

    Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327Google Scholar

    [25]

    Aggarwal L, Božović I 2024 Materials 17 2546Google Scholar

    [26]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [29]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [30]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4

    [31]

    Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]

    [32]

    Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]

    [33]

    Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]

    [34]

    Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]

    [35]

    Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]

    [36]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429Google Scholar

    [37]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [38]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802Google Scholar

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771Google Scholar

    [41]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [42]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]

    [43]

    Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]

    [44]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]

    [45]

    Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]

    [46]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]

    [47]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [48]

    Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332Google Scholar

    [49]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [50]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]

    [51]

    Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [52]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [53]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]

    [54]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [55]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]

  • 图 1  (a) 铜氧化物超导体、(b) 方平面无限层结构镍氧化物超导体以及 (c) 双层RP结构镍氧化物超导体的晶体结构与电子结构示意图

    Figure 1.  Schematic diagrams of the crystal structures and electronic structures of (a) cuprate superconductors, (b) square-planar infinite-layer nickelate superconductors, and (c) bilayer RP nickelate superconductors under pressure.

    图 2  (a)大范围扫描透射电子显微镜图像显示3 UC La2.85Pr0.15Ni2O7/SrLaAlO4薄膜的纯相晶体结构; (b)零电阻和(c)互感抗磁性测试证实常压下双层RP结构镍氧化物超导电性的存在, 图(c)中蓝色和红色的点为实验测试数据, 实线为视觉引导线[38]

    Figure 2.  (a) A large field of view scanning transmission electron microscopy image of 3 UC La2.85Pr0.15Ni2O7/SrLaAlO4 film with pure-phase crystalline structure; (b) zero resistance and (c) mutual inductance diamagnetism results confirm the existence of superconductivity of double-layer RP nickel oxide at ambient-pressure. In panel (c), the blue and red dots represent the experimental data, and the solid lines are guides to the eye[38].

    图 3  强氧化原子逐层外延原理示意图[36]

    Figure 3.  Schematic diagram gigantic-oxidative atomic-layer-by-layer epitaxy[36].

    图 4  常压RP结构镍氧化物超导薄膜研究路线图

    Figure 4.  Research roadmap of ambient-pressure RP phase nickelate superconducting thin films.

    Baidu
  • [1]

    Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    McMillan W 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189Google Scholar

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1Google Scholar

    [6]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [7]

    Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [11]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002Google Scholar

    [12]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [13]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [14]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [15]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [16]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [17]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879Google Scholar

    [20]

    Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10Google Scholar

    [21]

    Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117Google Scholar

    [22]

    Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [23]

    Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109Google Scholar

    [24]

    Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327Google Scholar

    [25]

    Aggarwal L, Božović I 2024 Materials 17 2546Google Scholar

    [26]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [29]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [30]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4

    [31]

    Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]

    [32]

    Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]

    [33]

    Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]

    [34]

    Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]

    [35]

    Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]

    [36]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429Google Scholar

    [37]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [38]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802Google Scholar

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771Google Scholar

    [41]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [42]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]

    [43]

    Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]

    [44]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]

    [45]

    Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]

    [46]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]

    [47]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [48]

    Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332Google Scholar

    [49]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [50]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]

    [51]

    Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [52]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [53]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]

    [54]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [55]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]

  • [1] LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian. Spin excitation spectra of iron pnictide superconductors. Acta Physica Sinica, 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] XIANG Tao. High-temperature superconductivity: A driving force for the revolution in quantum many-body theory. Acta Physica Sinica, 2025, 74(7): 077403. doi: 10.7498/aps.74.20250313
    [3] CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi. Research progress of resonant X-ray scattering of charge order in cuprate superconductors. Acta Physica Sinica, 2025, 74(8): 087402. doi: 10.7498/aps.74.20241402
    [4] Zhou Ke-Jin. Resonant inelastic X-ray scattering applications in quantum materials. Acta Physica Sinica, 2024, 73(19): 197301. doi: 10.7498/aps.73.20241009
    [5] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [6] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [7] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [8] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [9] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [10] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [11] Hao Ying-Ping, Chen Xiang-Lei, Cheng Bin, Kong Wei, Xu Hong-Xia, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation lifetime study of SmFeAsO superconductor. Acta Physica Sinica, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [12] Li Huan, Guo Wei. Effect of spin polarization on the ground state of Kondo system. Acta Physica Sinica, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [13] Zhao Hong-Wei, Meng Hao, Zhang Ling-Feng, Zha Guo-Qiao, Zhou Shi-Ping. Transation of charged vortex structures in underdoped high-temperature superconductors. Acta Physica Sinica, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [14] Zuo Tao, Zhao Xin-Jie, Wang Xiao-Kun, Yue Hong-Wei, Fang Lan, Yan Shao-Lin. High temperature superconducting filter with linear phase on LaAlO3 substrates. Acta Physica Sinica, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [15] You Yu-Xin, Zhao Zhi-Gang, Wang Jin, Liu Mei. Oscillations of Josephson-vortex flow resistance in high-Tc superconductors. Acta Physica Sinica, 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [16] Wu Bing-Guo, Zhao Zhi-Gang, You Yu-Xin, Liu Mei. Phase transition and vortex noise spectrum in two-dimensional Josephson-junction array. Acta Physica Sinica, 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [17] Liang Fang-Ying, Liu Hong, Li Ying-Jun. Study of high temperature superconduction under pressure. Acta Physica Sinica, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [18] Zhang Yu-Long, Yao Xin, Zhang Hong, Jin Yan-Ping. The oxygen in- and out-diffusion behavior in melt-textured YBCO measured by thermogravimetry. Acta Physica Sinica, 2005, 54(7): 3380-3385. doi: 10.7498/aps.54.3380
    [19] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [20] Cao Tian-De, Huang Qing-Long. . Acta Physica Sinica, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
Metrics
  • Abstract views:  184
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2025
  • Accepted Date:  20 April 2025
  • Available Online:  25 April 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map