搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层FeSe薄膜/氧化物界面高温超导

丁翠 刘充 张庆华 龚冠铭 汪恒 刘效治 孟繁琦 杨好好 武睿 宋灿立 李渭 何珂 马旭村 谷林 王立莉 薛其坤

引用本文:
Citation:

单层FeSe薄膜/氧化物界面高温超导

丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤

Interface enhanced superconductivity in monolayer FeSe film on oxide substrate

Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun
PDF
导出引用
  • 单层FeSe/SrTiO3界面增强超导的发现为理解高温超导机理提供了一个新的途径,也为实现新的高温超导体开拓了新思路.本文通过在SrTiO3(001)表面高温沉积Mg进而沉积单层FeSe薄膜,制备出了FeSe/MgO双层/SrTiO3异质结.利用扫描隧道显微镜研究了异质结的电学及超导特性,观测到约1415 meV的超导能隙,比体相FeSe超导能隙值增大了56倍,与K掺杂双层FeSe/SrTiO3的超导能隙值相当.这一结果可理解为能带弯曲造成的界面电荷转移和界面处电声耦合共同作用导致的超导增强.FeSe/MgO界面是继FeSe/TiO2之后的一个新界面超导体系,为研究界面高温超导机理提供了新载体.
    We report on the observation of a superconducting gap of about 14-15 meV, significantly enlarged compared with the value of 2.2 meV for bulk FeSe, in monolayer FeSe film interfaced with MgO epitaxial on SrTiO3(001) substrate by using the scanning tunneling microscopy. While the MgO exhibits the same work function as SrTiO3 substrate, the gap magnitude is in coincidence with that of surface K-doped two-unit-cell FeSe film on SrTiO3(001), suggesting that the interface enhanced superconductivity might be attributed to cooperation of interface charge transfer driven by band bending with interface electron-phonon coupling as discovered at FeSe/TiO2 interfaces. On the other hand, the observation of such an enlarged superconducting gap, complementary to our previous transport observation of an onset superconducting transition temperature of 18 K in monolayer FeSe film on a bulk MgO substrate, implies that FeSe/MgO interface is likely to be a new interface high-temperature superconducting system, providing a new platform for investigating the mechanism of interface hightemperature superconductivity.
      通信作者: 王立莉, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn ; 薛其坤, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574174,11774193,11790311,51522212,51421002,51672307)、国家重点基础研究发展计划(批准号:2015CB921000,2014CB921002)和中国科学院战略优先研究项目(批准号:XDB07030200)资助的课题.
      Corresponding author: Wang Li-Li, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn ; Xue Qi-Kun, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574174, 11774193, 11790311, 51522212, 51421002, 51672307), the National Basic Research Program of China (Grant Nos. 2015CB921000, 2014CB921002), and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB07030200).
    [1]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [2]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [3]

    Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401

    [4]

    Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301

    [5]

    Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285

    [6]

    Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044

    [7]

    Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603

    [8]

    Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510

    [9]

    Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468

    [10]

    Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001

    [11]

    Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002

    [12]

    Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001

    [13]

    Wang L, Xue Q K 2017 AAPPS Bull. 27 4

    [14]

    Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)

    [15]

    He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605

    [16]

    Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [17]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [18]

    Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001

    [19]

    Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [20]

    Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325

    [21]

    Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42

    [22]

    Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002

    [23]

    Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986

    [24]

    Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116

    [25]

    Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214

    [26]

    Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507

    [27]

    Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969

    [28]

    Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011

    [29]

    Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513

    [30]

    Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925

    [31]

    Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261

    [32]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290

    [33]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [34]

    Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215

    [35]

    Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665

    [36]

    Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747

    [37]

    Binnig G, Rohrer H 1983 Surf. Sci. 126 236

    [38]

    Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764

    [39]

    Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453

    [40]

    Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002

    [41]

    Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520

    [42]

    Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502

    [43]

    Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506

    [44]

    Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87

    [45]

    Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533

    [46]

    Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731

    [47]

    Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138

    [48]

    Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586

  • [1]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [2]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [3]

    Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401

    [4]

    Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301

    [5]

    Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285

    [6]

    Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044

    [7]

    Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603

    [8]

    Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510

    [9]

    Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468

    [10]

    Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001

    [11]

    Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002

    [12]

    Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001

    [13]

    Wang L, Xue Q K 2017 AAPPS Bull. 27 4

    [14]

    Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)

    [15]

    He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605

    [16]

    Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [17]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [18]

    Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001

    [19]

    Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [20]

    Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325

    [21]

    Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42

    [22]

    Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002

    [23]

    Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986

    [24]

    Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116

    [25]

    Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214

    [26]

    Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507

    [27]

    Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969

    [28]

    Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011

    [29]

    Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513

    [30]

    Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925

    [31]

    Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261

    [32]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290

    [33]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [34]

    Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215

    [35]

    Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665

    [36]

    Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747

    [37]

    Binnig G, Rohrer H 1983 Surf. Sci. 126 236

    [38]

    Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764

    [39]

    Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453

    [40]

    Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002

    [41]

    Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520

    [42]

    Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502

    [43]

    Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506

    [44]

    Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87

    [45]

    Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533

    [46]

    Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731

    [47]

    Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138

    [48]

    Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586

  • [1] 朱孟龙, 杨俊, 董玉兰, 周源, 邵岩, 侯海良, 陈智慧, 何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究.  , 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [2] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相.  , 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [4] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构.  , 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [5] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释.  , 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究.  , 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展.  , 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [8] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [9] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展.  , 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究.  , 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究.  , 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究.  , 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究.  , 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散.  , 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究.  , 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子.  , 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究.  , 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究.  , 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  9706
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-10
  • 修回日期:  2018-09-21
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map