-
高温超导是凝聚态物理研究的一个基本问题, 也是本世纪亟待攻克的关键科学难题之一. 其研究不仅揭示了大量新奇的量子现象, 深化了对量子多体物理的理解, 还极大地促进了实验技术的创新以及关联量子理论与方法的发展. 更为重要的是, 高温超导是一个非微扰的强关联量子系统, 其研究为非微扰量子理论的突破提供了理想的实验平台, 是系统构建非微扰量子场论的关键驱动力. 当前, 高温超导研究面临着诸多挑战. 要取得实质性突破, 不仅需要发展基于新原理的实验探测技术, 构建新的量子多体理论框架和研究手段, 更重要的是要通过对已有实验现象和效应的深入分析, 挖掘这些现象之间的内在关联和规律, 为揭示高温超导机理提供关键线索, 同时推动量子多体理论的整体发展.High-temperature superconductivity, a fundamental topic in condensed matter physics, presents one of the critical scientific challenges of this century. The potential for breakthroughs in this field not only promises to reveal numerous novel quantum phenomena and deepen our understanding of quantum many-body physics but also to significantly drive advancements in experimental techniques, theories, and methodologies in probing correlated quantum systems. More importantly, as a non-perturbative quantum system, high-temperature superconductivity offers an ideal platform and a crucial driving force for systematically establishing non-perturbative quantum field theory. Currently, research on high-temperature superconductivity stands at a critical turning point. Achieving significant breakthroughs requires the development of cutting-edge detection technologies built upon novel concepts, the establishment of innovative theoretical frameworks and methodologies, and insightful elucidation of the physical pictures revealed by experimental findings. Such extensive exploration is vital for unveiling fundamental relationships and identifying the governing principles. By integrating these efforts, we can gain profound insights into the mechanisms of high-temperature superconductivity and significantly expand the horizons of quantum many-body theory.
-
Keywords:
- high-temperature superconductivity /
- quantum many-body theory /
- non-perturbative quantum field theory /
- strongly correlated systems
-
[1] Bednorz J G, Müller K A 1986 Z. Phys. B 64 189
Google Scholar
[2] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[3] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[4] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 NATURE 410 63
Google Scholar
[5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73
Google Scholar
[6] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
Google Scholar
[7] Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337
Google Scholar
[8] Hussey N E, Takenaka K, Takagi H 2004 Philos. Mag. 84 2847
Google Scholar
[9] Warren W W, J r, Walstedt R E, Brennert G F, Cava R J, Tycko R, Bell R F, Dabbagh G 1989 Phys. Rev. Lett. 62 1193
Google Scholar
[10] Alloul H, Ohno T, Mendels P 1989 Phys. Rev. Lett. 63 1700
Google Scholar
[11] Loram J W, Mirza K A, Cooper J R, Liang W Y 1993 Phys. Rev. Lett. 71 1740
Google Scholar
[12] Loram J W, Mirza K A, Cooper J R, Tallon J L 1997 Physica C: Superconductivity 282-287 1405
[13] 向涛, 薛健 2017 《物理》 46 514
Xiang Tao X J 2017 Physics 46 514
[14] Norman M R, Ding H, Randeria M, Campuzano J C, Yokoya T, Takeuchi T, Takahashi T, Mochiku T, Kadowaki K, Guptasarma P, Hinks D G 1998 Nature 392 157
Google Scholar
[15] Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison J B, Liang R, Bonn D A, Hardy W N, Taillefer L 2007 Nature 447 565
Google Scholar
[16] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K, Zhao Z 2022 Nature 602 431
Google Scholar
[17] Xiang T, Wu C J 2022 D-wave Superconductivity (Cambridge University Press). And references therein.
[18] 高淼, 卢仲毅, 向涛 2015 《物理》 44 421
Gao Miao L Z Y T 2015 Physics 44 421
[19] An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366
Google Scholar
[20] Zhang J F, Zhan B, Gao M, Liu K, Ren X G, Lu Z Y, Xiang T 2023 Phys. Rev. B 108 094519
Google Scholar
计量
- 文章访问数: 54
- PDF下载量: 2
- 被引次数: 0