搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B-样条基组方法在少电子原子结构精密计算中的应用

张永慧 史庭云 唐丽艳

引用本文:
Citation:

B-样条基组方法在少电子原子结构精密计算中的应用

张永慧, 史庭云, 唐丽艳

Applications of B-spline method in precise structure calculation of few-electron atoms

ZHANG Yonghui, SHI Tingyun, TANG Liyan
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 少电子原子的精密光谱在基本物理理论验证、精细结构常数精确测定以及原子核性质深入探索等领域具有重要的应用价值。随着精密测量物理学的快速发展,人们对原子结构数据的需求已从最初的存在性确认,转变为对高度准确性和精确性的持续追求。为了满足精密光谱实验对高精度结构性质数据的迫切需求,我们自主发展了一系列基于B-样条基组的高精度理论方法,并将其成功应用于少电子原子的能级结构与外场响应性质的理论研究中。具体而言,我们实现了氦原子和类氦离子能谱的高精度确定,为相关实验研究提供理论支撑;实现了幻零波长的高精度理论预言,为量子电动力学理论检验开辟了新方向;提出了有效抑制光频移的理论方案,为氦原子高精度光谱实验的开展提供了重要支持。展望未来,基于B-样条基组的高精度理论方法有望在量子态操控、核结构性质精确测定、超冷分子形成以及新物理探索等前沿领域得到广泛应用,从而进一步促进国内外精密测量物理领域的蓬勃发展。
    The precise spectroscopy of few-electron atoms plays a pivotal role in advancing fundamental physics, encompassing the verification of quantum electrodynamics (QED) theory, the determination of finestructure constants, and the exploration of nuclear properties. With the rapid development of precision measurement techniques, the demand for atomic structure data has evolved from mere confirmation of existence to the pursuit of unprecedented accuracy. To meet the growing needs for precision spectroscopy experiments, we have developed a series of high-precision theoretical methods based on B-spline basis sets, including the non-relativistic configuration interaction (B-NRCI) method, the correlated B-spline basis functions (C-BSBFs) method, and the relativistic configuration interaction (B-RCI) method. These methods leverage the unique properties of B-spline functions, such as locality, completeness, and numerical stability, to accurately solve the Schrödinger and Dirac equations for few-electron atoms.
    Our methods have yielded significant results, particularly for helium and helium-like ions. Using these methods, we have obtained accurate energies, polarizabilities, tune-out wavelengths, and magic wavelengths. Specifically, we have achieved high-precision determinations of the energy spectra of helium, providing vital theoretical support for related experimental research. Additionally, we have made highprecision theoretical predictions of tune-out wavelengths, paving the way for new tests of QED theory. Furthermore, we have proposed effective theoretical schemes to suppress Stark shifts, thereby facilitating high-precision spectroscopy experiments of helium.
    The B-spline-basis methods reviewed in this paper have proven exceptionally effective in highprecision calculations for few-electron atoms. These methods have not only provided crucial theoretical support for precision spectroscopy experiments but have also paved new avenues for testing QED. Their ability to handle large-scale configuration interactions and incorporate relativistic and QED corrections makes them versatile tools for advancing atomic physics research. In the future, the high-precision theoretical methods grounded in B-spline basis sets are poised to expand into frontier areas, including quantum state manipulation, nuclear structure property determination, ultracold molecule formation, and new physics exploration, thereby continuously driving the progress of precision measurement physics.
  • [1]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 744791

    [2]

    Patkóš V, Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94052508

    [3]

    Patkóš V, Yerokhin V A, Pachucki K 2017 Phys. Rev. A 95012508

    [4]

    Patkóš V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100042510

    [5]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103012803

    [6]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88052515

    [7]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104070403

    [8]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 35879

    [9]

    Drake G W F, Dhindsa H S, Marton V J 2021 Phys. Rev. A 104 L060801

    [10]

    Bethe H A 1947 Phys. Rev. 72339

    [11]

    Karshenboim S G 2005 Phys. Rep. 4221

    [12]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 5311800324

    [13]

    Drake G W F 2023 Handbook of Atomic, Molecular and Optical Physics (Cham: Springer Nature Switzerland AG 2023)

    [14]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95062510

    [15]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376199

    [16]

    James H M, Coolidge A S 1935 Phys. Rev. 47700

    [17]

    Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D, Varga K 2013 Rev. Mod. Phys. 85693

    [18]

    McKenzie D M, Drake G W F 1991 Phys. Rev. A 44 R6973

    [19]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 462378

    [20]

    Yan Z C, Drake G W F 1995 Phys. Rev. A 523711

    [21]

    Yan Z, Drake G W F 1997 J. Phys. B 304723

    [22]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79062712

    [23]

    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333196

    [24]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118063001

    [25]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121143002

    [26]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102030801

    [27]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131103002

    [28]

    Schoenberg I J 1946 Quart. Appl. Math. 445

    [29]

    Schoenberg I J 1967 New York: Academic Press 255

    [30]

    de Boor C 1978 A practical guide to Splines (New York: Springer)

    [31]

    Johnson W R, Sapirstein J 1986 Phys. Rev. Lett. 571126

    [32]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37307

    [33]

    Grant I P 1982 Phys. Rev. A 251230

    [34]

    Fischer C F 2008 Adv. At. Mol. Opt. Phys. 55235

    [35]

    Bachau H, Cormier E, Decleva P, Hansen J E, Martín F 2001 Rep. Prog. Phys. 641815

    [36]

    Xi J H, He X H, Li B W 1992 Phys. Rev. A 465806

    [37]

    Xi J H, Wu L J, Li B W 1993 Phys. Rev. A 472701

    [38]

    Rao J G, Liu W Y, Li B W 1994 Phys. Rev. A 501916

    [39]

    Qiao H X, Li B W 1999 Phys. Rev. A 603134

    [40]

    Wu L J 1996 Phys. Rev. A 53139

    [41]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70012506

    [42]

    Zhang Y H, Tang L Y, Zhang X Z, Jiang J, Mitroy J 2012 J. Chem. Phys. 136174107

    [43]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y, Mitroy J 2012 Chin. Phys. Lett. 29063101

    [44]

    Tang L Y, Zhang Y H, Zhang X Z, Jiang J, Mitroy J 2012 Phys. Rev. A 86012505

    [45]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2015 Phys. Rev. A 92012515

    [46]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Chin. Phys. B 25103101

    [47]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93052516

    [48]

    Wu F F, Yang S J, Zhang Y H, Zhang J Y, Qiao H X, Shi T Y, Tang L Y 2018 Phys. Rev. A 98040501(R)

    [49]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99040502(R)

    [50]

    Zhang Y H, Tang L Y, Shi T Y 2021 Phys. Rev. A 104042817

    [51]

    Zhang Y H, Tang L Y, Zhang J Y, Shi T Y 2021 Phys. Rev. A 103032810

    [52]

    Yang S J, Mei X S, Shi T Y, Qiao H X 2017 Phys. Rev. A 95062505

    [53]

    Fang H, Zhang Y H, Zhang P P, Shi T Y 2023 Phys. Rev. A 108062818

    [54]

    Fang H, Zhang Y H, Li-Yan T, Shi T Y Phys. Rev. A 110

    [55]

    Yang S J, Tang Y B, Zhao Y H, Shi T Y, Qiao H X 2019 Phys. Rev. A 100042509

    [56]

    Decleva P, Lisini A, Venuti M 1995 Int. J. Quantum Chem. 5627

    [57]

    Chen M H, Cheng K T, Johnson W R 1993 Phys. Rev. A 473692

    [58]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A, 108, L051101

    [59]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72241

    [60]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76679

    [61]

    Goldman S P 1984 Phys. Rev. A 301219

    [62]

    Goldman S P, Drake G W F 2000 Can. J. Phys. 61052513

    [63]

    Drake G W F, Goldman S P 2000 Can. J. Phys. 77835

    [64]

    Goldman S P 1994 Phys. Rev. A 503039

    [65]

    Zhang Y H, Shen L J, Xiao C M, Zhang J Y, Shi T Y 2020 J. Phys. B 53135003

    [66]

    Jentschura U D, Mohr P J 2005 Phys. Rev. A 72012110

    [67]

    Tang Y B, Zhong Z X, Li C B, Qiao H X, Shi T Y 2013 Phys. Rev. A 87022510

    [68]

    Kabir P K, Salpeter E E 1957 Phys. Rev. 1081256

    [69]

    Dalgarno A, Stewart A L 1960 Proc. Phys. Soc. A 7649

    [70]

    Schwartz C 1961 Phys. Rev. 1231700

    [71]

    Korobov V I, Korobov S V 1999 Phys. Rev. A 593394

    [72]

    Korobov V I 2012 Phys. Rev. A 85042514

    [73]

    Korobov V I 2019 Phys. Rev. A 100012517

    [74]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90052508

    [75]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87637

    [76]

    Arora B, Sahoo B K 2014 Phys. Rev. A 89022511

    [77]

    Porsev S G, Safronova M S, Derevianko A, Clark C W 2014 Phys. Rev. A 89022703

    [78]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93032515

    [79]

    Puchalski M, Szalewicz K, Lesiuk M, Jeziorski B 2020 Phys. Rev. A 101022505

    [80]

    Dzuba V A, Flambaum V V, Sushkov O P 1997 Phys. Rev. A 56 R4357

    [81]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B 43202001

    [82]

    Derevianko A, Savukov I M, Johnson W R, Plante D R 1998 Phys. Rev. A 584453

    [83]

    Johnson W, Plante D, Sapirstein J 1995 Adv. At., Mol., Opt. Phys. 35255

    [84]

    Pachucki K, Komasa J 2004 Phys. Rev. Lett. 92213001

    [85]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75053612

    [86]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109243004

    [87]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100063603

    [88]

    Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, Zhang J 2023 Nature 615231

    [89]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115043004

    [90]

    Lu S S, Zhang Y H, Shi T Y, Tang L Y 2025 J. Phys. B 58035002

    [91]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91173005

    [92]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91223001

    [93]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602420

    [94]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz 2022 Nature 602425

    [95]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 56487

    [96]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 141132

    [97]

    van der Werf Y, Steinebach K, Jannin R, Bethlem H L, Eikema K S E 2023 arXiv:2306.02333v1

    [98]

    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, Truscott A G 2020 Phys. Rev. Lett. 125013002

  • [1] 高克林. 少电子原子分子精密谱编者按.  , doi: 10.7498/aps.73.200101
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算.  , doi: 10.7498/aps.73.20240177
    [3] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量.  , doi: 10.7498/aps.73.20241231
    [4] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究.  , doi: 10.7498/aps.72.20221990
    [5] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究.  , doi: 10.7498/aps.70.20201386
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究.  , doi: 10.7498/aps.65.143101
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , doi: 10.7498/aps.63.113101
    [9] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响.  , doi: 10.7498/aps.63.167801
    [10] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究.  , doi: 10.7498/aps.60.013601
    [11] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究.  , doi: 10.7498/aps.59.2401
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响.  , doi: 10.7498/aps.58.3390
    [13] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质.  , doi: 10.7498/aps.57.116
    [14] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论.  , doi: 10.7498/aps.54.3000
    [15] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用.  , doi: 10.7498/aps.54.1149
    [16] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究.  , doi: 10.7498/aps.53.1793
    [17] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究.  , doi: 10.7498/aps.52.3002
    [18] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率.  , doi: 10.7498/aps.42.422
    [19] 申三国, 范希庆. Si中B-空位复合缺陷的电子结构.  , doi: 10.7498/aps.40.616
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率.  , doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map