Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure of NO dimer multilayer on Rh(111)

Wang Chen-Chao Wu Tai-Quan Wang Xin-Yan Jiang Ying

Citation:

Structure of NO dimer multilayer on Rh(111)

Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular self-assembly is the spontaneous organization of molecules under thermodynamic equilibrium conditions into well-defined arrangements via cooperative effects between chemical bonds and weak noncovalent interactions. Molecules undergo self-association without external instruction to form hierarchical structures. Molecular self-assembly is ubiquitous in nature and has recently emerged as a new strategy in chemical biosynthesis, polymer science and engineering. NO monomer is apt to be absorbed on the surfaces of some metals such as Ir(111), Ni(111), Pd(111), Pt(111), Rh(111) and Au(111), and the interactions of NO monomer with the metal surfaces have been extensively studied. When NO monomer is weakly adsorbed on the noble-metal surface, it cannot be reduced completely but forms a stable structure, which is named NO dimer. The first-principle technique is employed to determine the structures of NO dimer ((NO)2) molecular chains and monolayers on virtual Rh(111), as well as (NO)2 monolayer and multilayer on Rh(111). First, (NO)2 monomers are assembled into two stable molecular chains on the virtual Rh(111) surface, whose bind energies are 0.309 and 0.266 eV, respectively. The molecular chains are self-assembly systems, in which (NO)2 monomers are parallel and ordered, and the O atoms and N atoms are shown to be of (100) and (111) structures, respectively. Then, the two molecular chains are assembled into two stable monolayers (denoted as M1 and M2) on the virtual Rh(111)-(13), and the coverage is 1.00 ML. In the M1 monolayer, the angle between the NN bond of (NO)2 monomer and the substrate is in a range of 70-90, and in the M2 monolayer, the NN bond is parallel to the substrate.In the adsorption system of M2/Rh(111), (NO)2 molecules can be adsorbed on the top as well as the hcp and fcc hollow sites. When (NO)2 molecules are adsorbed on the top site, the adsorption system is best described by the electron structure Rh+0.14N0=O-0.14, and when (NO)2 molecules are absorbed on the two hollow sites, the adsorption system is described by the electron structure Rh+0.34N-0.18=O-0.16. Therefore, (NO)2 molecules are more apt to be adsorbed on the two hollow sites than on the top site. In the adsorption systems of M1+M2/Rh(111) and M1+(M1+M2)/Rh(111), (NO)2 molecules are adsorbed vertically on the two hollow sites, the NN bond is parallel to the substrate in the first monolayer, and the angle between the NN bond and the substrate is in a range of 70-90 in the second and third monolayers. The interaction between the neighbor monolayers is about 0.01 eV, and the thickness of the vacuum layer is 0.31 nm0.02 nm.
      Corresponding author: Wu Tai-Quan, buckyballling@hotmail.com
    • Funds: Project Supported by the National Natural Science Foundation of Zhejiang Province, China (Grant No. LY13E080007).
    [1]

    Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312

    [2]

    Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688

    [3]

    Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720

    [4]

    Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]

    [5]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]

    [6]

    Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524

    [7]

    Orville-Thomas W J 1954 J. Chem. Phys. 22 1267

    [8]

    Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679

    [9]

    Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15

    [10]

    Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245

    [11]

    Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235

    [12]

    Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701

    [13]

    Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404

    [14]

    Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502

    [15]

    Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865

    [17]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]

    [18]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [19]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [20]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [21]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [22]

    Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534

    [23]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

  • [1]

    Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312

    [2]

    Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688

    [3]

    Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720

    [4]

    Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]

    [5]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]

    [6]

    Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524

    [7]

    Orville-Thomas W J 1954 J. Chem. Phys. 22 1267

    [8]

    Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679

    [9]

    Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15

    [10]

    Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245

    [11]

    Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235

    [12]

    Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701

    [13]

    Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404

    [14]

    Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502

    [15]

    Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865

    [17]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]

    [18]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [19]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [20]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [21]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [22]

    Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534

    [23]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

  • [1] Li Bai, Wu Tai-Quan, Wang Chen-Chao, Jiang Ying. Structure of BP3S monolayer on Au(111). Acta Physica Sinica, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [2] Wu Tai-Quan, Wang Xin-Yan, Jiao Zhi-Wei, Luo Hong-Lei, Zhu Ping. Structure of CO monolayer on Cu(100). Acta Physica Sinica, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [3] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [4] Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li. Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles. Acta Physica Sinica, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [5] Zang Du-Yang, Zhang Yong-Jian. Interfacial rheological study of silica nanoparticle monolayer by an indentation approach. Acta Physica Sinica, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [6] Jiang Ping, Si Dao-Wei, Zhu Hui-Wen, Li Pei-Gang, Wang Shun-Li, Cui Can, Tang Wei-Hua. Optical and electrical characterization of (BiFeO3)25/(La0.7Sr0.3MnO3)25 multilayered thin films. Acta Physica Sinica, 2011, 60(11): 117203. doi: 10.7498/aps.60.117203
    [7] Langevin Dominique, Zhang Yong-Jian, Zang Du-Yang. Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates. Acta Physica Sinica, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [8] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [9] Zhai Zhong-Hai, Teng Jiao, Li Bao-He, Wang Li-Jin, Yu Guang-Hua, Zhu Feng-Wu. Exchange bias with perpendicular anisotropy in (Pt/Co)n/FeMn multilayers. Acta Physica Sinica, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [10] Wei Xiang-Jun, Xu Qing, Wang Tian-Min, Jia Quan-Jie, Wang Huan-Hua, Feng Song-Lin. Microstructure of TiNi shape memory alloy films made of sputter-deposited Ni/Ti multilayers. Acta Physica Sinica, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [11] Wang Wen-Jing, Yuan Hui-Min, Jiang Shan, Xiao Shu-Qin, Yan Shi-Shen. Transverse giant magneto-impedance effect in FeCuCrVSiB single layered and multilayered films. Acta Physica Sinica, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [12] Hwang Pol, Li Bao-He, Yang Tao, Zhai Zhong-Hai, Zhu Feng-Wu. Correlation among magnetic properties, perpendicular magnetic recording properti es and microstructure of[Co8585Cr1515/Pt]2020 multilayers. Acta Physica Sinica, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [13] Chen Wei-Ping, Xiao Shu-Qin, Wang Wen-Jing, Jiang Shan, Liu Yi-Hua. Study on the giant magnetoimpedance effect of FeCuCrVSiB multilayered films. Acta Physica Sinica, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [14] Qiao Feng, Huang Xin-Fan, Zhu Da, Ma Zhong-Yuan, Zou HeCheng, Sui Yan-Ping, Li Wei, Zhou Xiao-Hui, Chen Kun-Ji. NcSi/SiO2 multilayer prepared by the method of laser constrained crystallization. Acta Physica Sinica, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [15] Wang Hong-Chang, Wang Zhan-Shan, Li Fo-Sheng, Qin Shu-Ji, Du Yun, Wang Li, Zhang Zhong, Chen Ling-Yan. Analysis of the reflective performance of EUV multilayer under the influence of capping layer. Acta Physica Sinica, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
    [16] Wen Xiao-Wen, Li Guo-Jun, Qiu Gao-Xin, Li Yong-Ping, Ding Lei, Sui Zhan. One-dimensional magneto optical multi-layer film isolator with multi-defect. Acta Physica Sinica, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] Zhou Xun, Liang Bing-Qing, Wang Hai, Zhang Zhen-Rong, Chen Liang-Yao, Wang Yin-Jun. A study on magnetic and magneto-optical properties of PdMn/Co multilayers. Acta Physica Sinica, 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [18] Xu Run, Shen Ming-Rong, Ge Shui-Bing. . Acta Physica Sinica, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] LIANG BING-QING, CHEN XI, ZHOU XUN, LIU HONG, WANG HAI, TANG YUN-JUN, WANG YIN-JUN, WANG SONG-YOU, CHEN LIANG-YAO. MAGNETO-OPTICAL PROPERTIES OF Pt1-xMnx/Co MULTILAYERS. Acta Physica Sinica, 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
    [20] ZHOU YUN-SONG, CHEN JIN-CHANG, LIN DUO-LIANG. MAGNETIC BEHAVIOUR OF ISING MULTILAYERS. Acta Physica Sinica, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
Metrics
  • Abstract views:  7325
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2016
  • Accepted Date:  03 November 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map