搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子离子碎裂过程中动能释放的校准方法

张敏 闫顺成 高永 张少锋 马新文

引用本文:
Citation:

分子离子碎裂过程中动能释放的校准方法

张敏, 闫顺成, 高永, 张少锋, 马新文

Methods of calibrating kinetic energy release in dissociation process of molecular dications

Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen
PDF
HTML
导出引用
  • 分子离子碎裂过程中, 动能释放(KER)是一个重要的物理参量, 通过研究其分布特征, 可以获取母体离子态布居、分子结构、以及解离机制等信息. 本文以CO2+ → C+ + O+两体碎裂过程为例, 详细介绍了KER的重构过程. 利用C+离子的二维动量分布、KER与离子出射角度的关系, 校准了影响KER重构的实验参数: 飞行时间、飞行时间谱仪电压、位置坐标. 校准过程中, 只有当碎片离子的二维动量分布呈圆形或者KER与离子出射角的分布呈直线时, 影响KER重构的参数才符合校准标准.
    In the studies of fragmentation processes of molecules induced by extreme ultraviolet photons, intense laser fields, or charged particles, kinetic energy release (KER) is a key physical parameter. It can reveal the electronic states of the parent molecular ion, and provide an insight into the molecular structures and the dissociation dynamics. Therefore, it is essential to obtain the accurate KER spectrum for studying the fragmentation process of molecules. However, in the experiments using reaction microscope, experimental parameters such as the time-of-flight (TOF), the voltage of the TOF spectrometer and the detector image of the fragments have significant influence on the accuracy of KER determination. In this work, by taking the two-body fragmentation process of CO2+ → C+ + O+ induced by 108 keV/u Ne8+ impact on CO molecules as a prototype, we introduce two methods to accurately calibrate the reconstructed KER spectrum. The first method is to employ two-dimensional momentum spectra of C+ ions obtained by slicing the momentum sphere. The parameters are correctly calibrated when the circular distribution of the two-dimensional ion momentum image is restored. The second method is to use the correlation spectra of the KER as a function of the emission angle of the C+ ions to calibrate the experimental parameters, the calibration meets the required level only when the linear dependence of the emission angle on the KER is fulfilled. Then, calibrated KER spectrum is obtained for the dissociation process. By fitting the peak dissociated from the $^{3}\Sigma^{+}$ state of CO2+ in the KER spectrum, the energy resolution is estimated at 0.24 eV under these experimental conditions. Although these two methods can be used to accurately calibrate the reconstructed KER spectrum, the second calibration method does not require particularly high data statistics, and is suitable for analyzing the processes with lower reaction cross section. Furthermore, this method is convenient for debugging the parameters. Both methods are reliable for parameter calibration and guarantee high accuracy KER for molecular fragmentation experiments in future.
      通信作者: 张少锋, zhangshf@impcas.ac.cn ; 马新文, x.ma@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11804347)资助的课题.
      Corresponding author: Zhang Shao-Feng, zhangshf@impcas.ac.cn ; Ma Xin-Wen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant No. 11804347)
    [1]

    Feldman P D, Brune W H 1976 Astrophys. J. 209 L45Google Scholar

    [2]

    Cravens T E 2002 Science 296 1042Google Scholar

    [3]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges S 2014 Planet Space Sci. 99 149Google Scholar

    [4]

    Falcinelli S, Pirani F, Alagia M, Schio L, Richter R, Stranges S, Balucani N, Vecchiocattivi F 2016 Atmosphere 7 112Google Scholar

    [5]

    Zewail Ahmed H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [6]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett 11 3129Google Scholar

    [7]

    Boudaïffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [8]

    Kim H K, Titze J, Schöffler M, Trinter F, Waitz M, Voigtsberger J, Sann H, Meckel M, Stuck C, Lenz U, Odenweller M, Neumann N, Schössler S, Ullmann-Pfleger K, Ulrich B, Fraga R C, Petridis N, Metz D, Jung A, Grisenti R, Czasch A, Jagutzki O, Schmidt, L, Jahnke T, Schmidt-Böcking, H, Dörner R 2011 Proc. Natl. Acad. Sci. 108 11821Google Scholar

    [9]

    Märk T D, Dunn G H 1985 Electron-Impact Ionization (New York: Springer) pp320–374

    [10]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [13]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [14]

    Martín F, Fernández J, Havermeier T, Foucar L, Weber Th, Kreidi K, Schöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A Prior M H, Schmidt-Böcking H, Cocke C L, Dörner R 2007 Science 315 629Google Scholar

    [15]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [16]

    Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P, Wu J 2016 Phys. Rev. Lett. 117 103002Google Scholar

    [17]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [18]

    Xu S Y, Zhao H Y, Zhu X L, Guo D L, Feng W T, Lau K C, Ma X W 2018 Phys. Chem. Chem. Phys. 20 27725Google Scholar

    [19]

    Chen L, Shan X, Zhao X, Zhu X L, H u, X Q, Wu Y, Feng W T, Guo D L, Zhang R T, Gao Y, Huang Z K, Wang J G, Ma X W, Chen X J 2019 Phys. Rev. A 99 012710Google Scholar

    [20]

    Alnaser A S, Voss S, Tong X M, Maharjan C M, Ranitovic P, Ulrich B, Osipov T, Shan B, Chang Z, Cocke C L 2004 Phys. Rev. Lett. 93 113003Google Scholar

    [21]

    Gao Y, Zhang S F, Zhu X L, Guo D L, Schulz M, Voitkiv A B, Zhao D M, Hai B, Zhang M, Zhang R T, Feng W T, Yan S, Wang H B, Huang Z K, Ma X 2018 Phys. Rev. A 97 020701Google Scholar

    [22]

    Zeller S, Kunitski M, Voigtsberger J, Waitz M, Trinter F, Eckart S, Kalinin A, Czasch A, Schmidt L Ph H, Weber T, Schöffler M, Jahnke T, Dörner R 2018 Phys. Rev. Lett. 121 083002Google Scholar

    [23]

    Chen L, Shan X, Wang E L, Ren X D, Zhao X, Huang W Z, Chen X G 2019 Phys. Rev. A 100 062707Google Scholar

    [24]

    申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅 2018 67 043401Google Scholar

    Shen L L, Yan S C, Ma X W, Zhu X L, Zhang S F, Feng W T, Zhang P J, Guo D L, Gao Y, Hai B, Zhang M, Zhao D M 2018 Acta Phys. Sin. 67 043401Google Scholar

    [25]

    Zhu X L, Yan S, Feng W T, Guo D L, Gao Y, Zhang R T, Zhang S F, Wang H B, Huang Z K, Zhang M, Hai B, Zhao D M, Wen W Q, Zhang P, Qian D B, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 42Google Scholar

    [26]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [27]

    Kim H K 2014 Ph. D. Dissertation (Frankfurt: Frankfurt University)

    [28]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058Google Scholar

    [29]

    Pandey A, Bapat B, Shamasundar K R 2014 J. Chem. Phys. 140 034319Google Scholar

    [30]

    高永, 张少锋, 朱小龙, 闫顺成, 冯文天, 张瑞田, 郭大龙, 李斌, 汪寒冰, 黄忠魁, 海帮, 张敏, 马新文 2016 原子核物理评论 33 513Google Scholar

    Gao Y, Zhang S F, Zhu X L, Yan S C, Feng W T, Zhang R T, Guo D L, Li B, Wang H B, Huang Z K, Hai B, Zhang M, Ma X W 2016 Nucl. Phys. Rev. 33 513Google Scholar

  • 图 1  TOF结构装置示意图

    Fig. 1.  Schematic view of TOF

    图 2  相对飞行时间$ t_{0}^{\rm e} $$\sqrt{{m}/{q}}$的关系图(每道为25 ps)

    Fig. 2.  Relationship between relative TOF $ t_{0}^{\rm e} $ and $\sqrt{{m}/{q}}$ (every channel is 25 ps)

    图 3  Ne8+离子与CO作用后碎片离子的飞行时间谱

    Fig. 3.  TOF spectrum of fragment ions produced by Ne8+ interaction with CO

    图 4  $ t(P_{x}) $$ t(0) $与动量$ P_{x} $的关系图

    Fig. 4.  Relationship between $ t(P_{x}) $$ t(0) $ and $ P_{x} $.

    图 5  Ne8+离子与CO作用后反冲离子的位置谱

    Fig. 5.  Position spectrum of recoil ions produced by Ne8+ interaction with CO.

    图 6  (a)−(c)切片后C+离子的二维动量分布(切片厚度为$ \pm $ 30 a.u.); (d)−(f) KER与$ \theta_{yz, yx, zx} $的二维关系图

    Fig. 6.  (a)–(c) Two-dimensional momentum distribution of C+ in yz, yx, zx plan after slicing (slice thickness is $ \pm $ 30 a.u.); (d)−(f) two-dimensional relationship between KER and $ \theta_{yz, yx, zx} $

    图 7  CO2+ $ \rightarrow $ C+ + O+碎裂过程的KER

    Fig. 7.  KER spectrum of the fragmentation process of CO2+ $ \rightarrow $ C+ + O+

    表 1  C+在不同初始动量$ P_{x} $下的飞行时间$ t(P_{x}) $

    Table 1.  TOF of C+ under different initial momentum $ P_{x} $

    $P_{x}$/arb. units $t(P_{x})$/ns $t(0)$ – $t(P_{x})$/ns
    0 3139.149 0
    1 3138.014 1.135
    2 3136.878 2.271
    3 3135.742 3.407
    4 3134.606 4.543
    5 3133.471 5.678
    10 3127.792 11.357
    20 3116.434 22.715
    30 3105.077 34.072
    40 3093.72 45.429
    50 3082.364 56.785
    100 3025.593 113.556
    下载: 导出CSV
    Baidu
  • [1]

    Feldman P D, Brune W H 1976 Astrophys. J. 209 L45Google Scholar

    [2]

    Cravens T E 2002 Science 296 1042Google Scholar

    [3]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges S 2014 Planet Space Sci. 99 149Google Scholar

    [4]

    Falcinelli S, Pirani F, Alagia M, Schio L, Richter R, Stranges S, Balucani N, Vecchiocattivi F 2016 Atmosphere 7 112Google Scholar

    [5]

    Zewail Ahmed H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [6]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett 11 3129Google Scholar

    [7]

    Boudaïffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [8]

    Kim H K, Titze J, Schöffler M, Trinter F, Waitz M, Voigtsberger J, Sann H, Meckel M, Stuck C, Lenz U, Odenweller M, Neumann N, Schössler S, Ullmann-Pfleger K, Ulrich B, Fraga R C, Petridis N, Metz D, Jung A, Grisenti R, Czasch A, Jagutzki O, Schmidt, L, Jahnke T, Schmidt-Böcking, H, Dörner R 2011 Proc. Natl. Acad. Sci. 108 11821Google Scholar

    [9]

    Märk T D, Dunn G H 1985 Electron-Impact Ionization (New York: Springer) pp320–374

    [10]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [13]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [14]

    Martín F, Fernández J, Havermeier T, Foucar L, Weber Th, Kreidi K, Schöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A Prior M H, Schmidt-Böcking H, Cocke C L, Dörner R 2007 Science 315 629Google Scholar

    [15]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [16]

    Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P, Wu J 2016 Phys. Rev. Lett. 117 103002Google Scholar

    [17]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [18]

    Xu S Y, Zhao H Y, Zhu X L, Guo D L, Feng W T, Lau K C, Ma X W 2018 Phys. Chem. Chem. Phys. 20 27725Google Scholar

    [19]

    Chen L, Shan X, Zhao X, Zhu X L, H u, X Q, Wu Y, Feng W T, Guo D L, Zhang R T, Gao Y, Huang Z K, Wang J G, Ma X W, Chen X J 2019 Phys. Rev. A 99 012710Google Scholar

    [20]

    Alnaser A S, Voss S, Tong X M, Maharjan C M, Ranitovic P, Ulrich B, Osipov T, Shan B, Chang Z, Cocke C L 2004 Phys. Rev. Lett. 93 113003Google Scholar

    [21]

    Gao Y, Zhang S F, Zhu X L, Guo D L, Schulz M, Voitkiv A B, Zhao D M, Hai B, Zhang M, Zhang R T, Feng W T, Yan S, Wang H B, Huang Z K, Ma X 2018 Phys. Rev. A 97 020701Google Scholar

    [22]

    Zeller S, Kunitski M, Voigtsberger J, Waitz M, Trinter F, Eckart S, Kalinin A, Czasch A, Schmidt L Ph H, Weber T, Schöffler M, Jahnke T, Dörner R 2018 Phys. Rev. Lett. 121 083002Google Scholar

    [23]

    Chen L, Shan X, Wang E L, Ren X D, Zhao X, Huang W Z, Chen X G 2019 Phys. Rev. A 100 062707Google Scholar

    [24]

    申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅 2018 67 043401Google Scholar

    Shen L L, Yan S C, Ma X W, Zhu X L, Zhang S F, Feng W T, Zhang P J, Guo D L, Gao Y, Hai B, Zhang M, Zhao D M 2018 Acta Phys. Sin. 67 043401Google Scholar

    [25]

    Zhu X L, Yan S, Feng W T, Guo D L, Gao Y, Zhang R T, Zhang S F, Wang H B, Huang Z K, Zhang M, Hai B, Zhao D M, Wen W Q, Zhang P, Qian D B, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 42Google Scholar

    [26]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [27]

    Kim H K 2014 Ph. D. Dissertation (Frankfurt: Frankfurt University)

    [28]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058Google Scholar

    [29]

    Pandey A, Bapat B, Shamasundar K R 2014 J. Chem. Phys. 140 034319Google Scholar

    [30]

    高永, 张少锋, 朱小龙, 闫顺成, 冯文天, 张瑞田, 郭大龙, 李斌, 汪寒冰, 黄忠魁, 海帮, 张敏, 马新文 2016 原子核物理评论 33 513Google Scholar

    Gao Y, Zhang S F, Zhu X L, Yan S C, Feng W T, Zhang R T, Guo D L, Li B, Wang H B, Huang Z K, Hai B, Zhang M, Ma X W 2016 Nucl. Phys. Rev. 33 513Google Scholar

  • [1] 王子豪, 龙烨, 仇轲, 徐佳木, 孙艳玲, 范修宏, 马琳, 廖家莉, 康永强. 基于Adam算法的光学相控阵输出光束校准方法.  , 2024, 73(9): 094206. doi: 10.7498/aps.73.20231772
    [2] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制.  , 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [3] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统.  , 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [5] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [6] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析.  , 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [7] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构.  , 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [8] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究.  , 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [9] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析.  , 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [10] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学.  , 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [11] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究.  , 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [12] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析.  , 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [13] 刘全慧. 曲面上的动量和动能算符.  , 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [14] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究.  , 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [15] 刘 超, 张尚剑, 谢 亮, 祝宁华. 构建虚拟网络的网络分析仪夹具校准新方法.  , 2005, 54(6): 2606-2610. doi: 10.7498/aps.54.2606
    [16] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数.  , 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [17] 侯喜文, 谢汨, 马中骐. 费密共振和甲烷的振动能谱.  , 1997, 46(6): 1073-1078. doi: 10.7498/aps.46.1073
    [18] 杨炳忻, 陈向军, 庞文宁, 陈淼华, 张芳, 田宝利, 徐克尊. (e,2e)电子动量谱仪研制和若干原子分子的电子动量谱测量.  , 1997, 46(5): 862-869. doi: 10.7498/aps.46.862
    [19] 徐济安, 毛河光, PETER BELL. 百万大气压下的压强校准及5.5 Mbar静压强的获得.  , 1987, 36(4): 501-510. doi: 10.7498/aps.36.501
    [20] 沈洪涛, 阮图南, 李扬国. F19的转动能谱.  , 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
计量
  • 文章访问数:  5943
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-07-03
  • 上网日期:  2020-10-14
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map