Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Imaging of heteronuclear molecular structures based on strong-field tomographic scheme

WU Wenzhuo WANG Shijun WANG Yanlan LAI Xuanyang QUAN Wei LIU Xiaojun

Citation:

Imaging of heteronuclear molecular structures based on strong-field tomographic scheme

WU Wenzhuo, WANG Shijun, WANG Yanlan, LAI Xuanyang, QUAN Wei, LIU Xiaojun
cstr: 32037.14.aps.74.20241792
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The study of atomic and molecular structure imaging is of great significance in revealing the microscopic nature of matter and promoting the frontier development of materials science and life science. The rapid development of femtosecond laser technology provides a new method for detecting atomic and molecular structures on an ultrafast time scale, such as strong-field tomography scheme. Strong-field tomography uses strong-field driven electron rescattering to detect the structure of oriented molecules. The advantage of this scheme is that it does not require priori knowledge of atomic differential cross-sections. Using the strong-field tomography scheme, the structural extraction of homonuclear diatomic molecules can be realized successfully. However, it is currently unclear whether this imaging scheme is applicable to the heteronuclear molecular system with more complex cross section of the electron. In this work, heteronuclear diatomic molecules are taken for example and the strong-field tomography scheme is used to study the imaging of the molecular structure. By solving the time-dependent Schrödinger equation, the variation of the photoelectron yield with the orientation angle of the molecular axis is obtained. Next, a fitting method for the variation of the photoelectron yields of the heteronuclear molecules with the orientation angle is presented, and then the fitted value of the internuclear separation is obtained. It is found that the fitting result is comparable to the real molecular internuclear separation, indicating that the strong-field tomography scheme is also suitable for the extraction of heteronuclear molecular structural information.
      Corresponding author: LAI Xuanyang, xylai@wipm.ac.cn ; LIU Xiaojun, xjliu@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307702), the National Natural Science Foundation of China (Grant Nos. 12121004, 11922413, 12174401), and the CAS Project for Young Scientists in Basic Research, China (Grant No. YSBR-091).
    [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [3]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [4]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [5]

    Zuo T, Bandrauk A, Corkum P B 1996 Chem. Phys. Lett. 259 313Google Scholar

    [6]

    Blaga C I, Xu J L, DiChiara A D, Sistrunk E, Zhang K K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194Google Scholar

    [7]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M, Corkum P B 2008 Science 320 1478Google Scholar

    [8]

    Xu J, Blaga C I, Zhang K, Lai Y H, Lin C D, Miller T A, Agostini P, DiMauro L F 2014 Nat. Commun. 5 4635Google Scholar

    [9]

    Pullen M G, Wolter B, Le A T, Baudisch M, Sclafani M, Pires H, Schröter C D, Ullrich J, Moshammer R, Pfeifer T, Lin C D, Biegert J 2016 Nat. Commun. 7 11922Google Scholar

    [10]

    Sanchez A, Amini K, Wang S J, Steinle T, Belsa B, Danek J, Le A T, Liu X, Moshammer R, Pfeifer T, Richter M, Ullrich J, Gräfe S, Lin C D, Biegertet J 2021 Nat. Commun. 12 1520Google Scholar

    [11]

    Rajak D, Beauvarlet S, Kneller O, Comby A, Cireasa R, Descamps D, Fabre B, Gorfinkiel J D, Higuet J, Petit S, Rozen S, Ruf H, Thiré N, Blanchet V, Dudovich N, Pons B, Mairesse Y 2024 Phys. Rev. X 14 011015Google Scholar

    [12]

    Yang Y Z, Hu X Q, Wu L, Wang Z P, Li X K, Zhou S P, Wang Z Z, Guo F M, He L H, Luo S Z, Zhang D D, Wang J G, Chen X J, Wu Y, Wang C C, Ding D J 2024 Phys. Rev. Lett. 133 113203Google Scholar

    [13]

    Sun R P, Lai X Y, Yu S G, Wang Y L, Xu S P, Quan W, Liu X J 2019 Phys. Rev. Lett. 122 193202Google Scholar

    [14]

    Busuladžić M, Gazibegović-Busuladžić A, Milošević D B, Becker W 2008 Phys. Rev. Lett. 100 203003Google Scholar

    [15]

    Busuladžić M, Gazibegović-Busuladžić A, Milošević D B, Becker W 2008 Phys. Rev. A 78 033412Google Scholar

    [16]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [17]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176Google Scholar

    [18]

    Tong X M, Watahiki S, Hino K, Toshima N 2007 Phys. Rev. Lett. 99 093001Google Scholar

    [19]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov, M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [20]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

  • 图 1  (a)—(c)通过TDSE计算得到的不同取向角下异核双原子分子的二维光电子动量分布, 其中分子取向角θL分别为(a) 0°, (b) 60°和(c) 90°, 左下角展示分子取向的示意图; (b)和(c)中两个白色箭头指向以z轴为对称轴的二维动量谱上下出现明显不对称的区域; (d)—(f)为提取出来的沿激光极化方向(z轴)的光电子能谱, 其中红色框区域代表高阶阈上电离谱平台结构的截止位置, 10Up.

    Figure 1.  (a)–(c) Two-dimensional photoelectron momentum distributions of heteronuclear diatomic molecules at different orientation angles calculated with TDSE. The molecular orientation angles are (a) 0°, (b) 60°, and (c) 90°. The lower left corner shows a schematic diagram of the molecular orientation. The white arrows in panel (b) and (c) point to the regions of apparent asymmetry of the spectra along the z axis. (d)–(f) The extracted photoelectron spectra along the laser polarization direction (z axis). The red box areas denote the cutoff region of the high-order above-threshold ionization platform structure, 10Up.

    图 2  (a)不同分子轴取向角下电子再散射过程的示意图, Δ代表散射前后电子的动量变化量; (b)截止位置附近(9.83 Up—10.17 Up)的光电子产率随分子取向角的变化(黑色散点), 其中红色曲线是利用(7)式拟合的结果

    Figure 2.  (a) Diagram of electron rescattering at different molecular orientation angles, Δ represents the change of the electron momentum before and after the scattering; (b) the variation of the photoelectron yields at the cutoff region (9.83 Up–10.12 Up) with the orientation angle (black dots), where the red curve is the fitting result using Eq. (7).

    图 3  核间距Rf = 2.068 a.u.的同核双原子分子, 在高阶阈上电离谱截止位置区域的光电子产率随分子轴取向角的变化(黑色散点), 其中红色曲线是利用公式$ {\left|{\mathrm{c}}{\mathrm{o}}{\mathrm{s}}\right[(p - k){R}_{{\mathrm{f}}}{\mathrm{c}}{\mathrm{o}}{\mathrm{s}}{\theta }_{{\mathrm{L}}}\left]\right|}^{2} $进行最优拟合的结果, 使用的激光参数与图1的激光参数相同

    Figure 3.  For a homonuclear diatomic molecule with internuclear distance Rf = 2.068 a.u., the variation of the photoelectron yields at the cutoff region with the orientation angle (black dots). The red curve is the best fitting result according to the formula $ {\left|{\mathrm{c}}{\mathrm{o}}{\mathrm{s}}\right[(p-k){R}_{{\mathrm{f}}}{\mathrm{c}}{\mathrm{o}}{\mathrm{s}}{\theta }_{{\mathrm{L}}}\left]\right|}^{2} $. The laser parameters are the same as those used in Fig. 1.

    图 4  采用强场层析成像方案, 针对不同核间距R0的异核双原子分子, 拟合出的核间距, 其中红色的点代表拟合值, 其对应的误差来源于曲线拟合过程中的误差

    Figure 4.  Internuclear distance of heteronuclear diatomic molecules with different internuclear separation R0 obtained with strong-field tomography method. The red dots represent the fitted values, and the errors are obtained from the fitting errors of the corresponding curves.

    Baidu
  • [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [3]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [4]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [5]

    Zuo T, Bandrauk A, Corkum P B 1996 Chem. Phys. Lett. 259 313Google Scholar

    [6]

    Blaga C I, Xu J L, DiChiara A D, Sistrunk E, Zhang K K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194Google Scholar

    [7]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M, Corkum P B 2008 Science 320 1478Google Scholar

    [8]

    Xu J, Blaga C I, Zhang K, Lai Y H, Lin C D, Miller T A, Agostini P, DiMauro L F 2014 Nat. Commun. 5 4635Google Scholar

    [9]

    Pullen M G, Wolter B, Le A T, Baudisch M, Sclafani M, Pires H, Schröter C D, Ullrich J, Moshammer R, Pfeifer T, Lin C D, Biegert J 2016 Nat. Commun. 7 11922Google Scholar

    [10]

    Sanchez A, Amini K, Wang S J, Steinle T, Belsa B, Danek J, Le A T, Liu X, Moshammer R, Pfeifer T, Richter M, Ullrich J, Gräfe S, Lin C D, Biegertet J 2021 Nat. Commun. 12 1520Google Scholar

    [11]

    Rajak D, Beauvarlet S, Kneller O, Comby A, Cireasa R, Descamps D, Fabre B, Gorfinkiel J D, Higuet J, Petit S, Rozen S, Ruf H, Thiré N, Blanchet V, Dudovich N, Pons B, Mairesse Y 2024 Phys. Rev. X 14 011015Google Scholar

    [12]

    Yang Y Z, Hu X Q, Wu L, Wang Z P, Li X K, Zhou S P, Wang Z Z, Guo F M, He L H, Luo S Z, Zhang D D, Wang J G, Chen X J, Wu Y, Wang C C, Ding D J 2024 Phys. Rev. Lett. 133 113203Google Scholar

    [13]

    Sun R P, Lai X Y, Yu S G, Wang Y L, Xu S P, Quan W, Liu X J 2019 Phys. Rev. Lett. 122 193202Google Scholar

    [14]

    Busuladžić M, Gazibegović-Busuladžić A, Milošević D B, Becker W 2008 Phys. Rev. Lett. 100 203003Google Scholar

    [15]

    Busuladžić M, Gazibegović-Busuladžić A, Milošević D B, Becker W 2008 Phys. Rev. A 78 033412Google Scholar

    [16]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [17]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176Google Scholar

    [18]

    Tong X M, Watahiki S, Hino K, Toshima N 2007 Phys. Rev. Lett. 99 093001Google Scholar

    [19]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov, M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [20]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

  • [1] Li Qing, Yunlan Ji, Ran Liu, Dieter Suter, Jiang Min, Peng Xinhua. Quantum Sensing Using Strongly Interacting Spin Systems. Acta Physica Sinica, 2025, 74(11): . doi: 10.7498/aps.74.20250271
    [2] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [4] Li Wei-Yan, Liu Na, Wang Shang. Physical origins of complex interference structures in harmonic emission from molecular ions stretched to large internuclear distances. Acta Physica Sinica, 2023, 72(8): 083101. doi: 10.7498/aps.72.20222410
    [5] Zhang Long-Yan,  Xu Jin-Liang,  Lei Jun-Peng. Molecular dynamics study of bubble nucleation on a nanoscale. Acta Physica Sinica, 2018, 67(23): 234702. doi: 10.7498/aps.67.20180993
    [6] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [7] Cheng Zhi-Yuan, Ma Cai-Wen, Luo Xiu-Juan, Zhang Yu, Zhu Xiang-Ping, Xia Ai-Li. Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error. Acta Physica Sinica, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [8] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [9] Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B. Acta Physica Sinica, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [10] Li Guan-Qiang, Peng Ping. Effects of external field parameters on conversion from ultracold atoms to heteronuclear triatomic molecules. Acta Physica Sinica, 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [11] Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang. Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments. Acta Physica Sinica, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [12] Wei Ya-Na, Yang Shi-Ping. Effect of molecular internuclear distance on non-sequential double ionization. Acta Physica Sinica, 2010, 59(10): 7298-7305. doi: 10.7498/aps.59.7298
    [13] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [14] Meng Shao-Ying, Wu Wei, Liu Bin. Dynamical stability of the dark state in an atom-heteronuclear-trimer conversion system. Acta Physica Sinica, 2009, 58(10): 6902-6907. doi: 10.7498/aps.58.6902
    [15] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [16] Gao Yong-Hua, Zhao Zhi-Heng, Hou Zhao-Yu, Cao He-Fei, Duan Chun-Gui, He Zhen-Min. Improved nuclear density model and the nuclear effect in P-A Drell-Yan process. Acta Physica Sinica, 2006, 55(11): 5760-5763. doi: 10.7498/aps.55.5760
    [17] Chen Jian-Wen, Gao Hong-Yi, Zhu Hua-Feng, Xie Hong-Lan, Li Ru-Xin, Xu Zhi-Zhan. Neutron phase contrast tomographic imaging method. Acta Physica Sinica, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [18] Li Xin-Xi, Sun Wei-Guo, Feng Hao. Studies on the potential energy curves of heteronuclear diatomic molecules using energy consistent method. Acta Physica Sinica, 2003, 52(2): 307-311. doi: 10.7498/aps.52.307
    [19] MIAO JING-WEI, SHI MIAN-GONG, YANG BAI-FANG, TANG A-YOU, N.CUE. EXPERIMENTAL DETERMINATION FOR 4HeH+ INTERNUCLEAR SEPARATION. Acta Physica Sinica, 2000, 49(6): 1058-1063. doi: 10.7498/aps.49.1058
    [20] SHEN YI-FAN, LI WAN-XING. ENERGY-POOLING COLLISIONS FOR Na(3P) +Cs(6P) HETERONUCLEAR SYSTEM. Acta Physica Sinica, 1996, 45(5): 774-778. doi: 10.7498/aps.45.774
Metrics
  • Abstract views:  169
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2024
  • Accepted Date:  02 February 2025
  • Available Online:  17 April 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map