Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cluster Behavior and Spontaneous Velocity Alignment of Active Brownian Particles with Attractive Interactions

Chen Jian-Li Li Jia-Jian Ai Bao-Quan

Citation:

Cluster Behavior and Spontaneous Velocity Alignment of Active Brownian Particles with Attractive Interactions

Chen Jian-Li, Li Jia-Jian, Ai Bao-Quan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Spontaneous velocity alignment can occur in active particle systems. As a fundamental inter-particle interaction, the attractive interaction has been shown to significantly affect the collective behavior of active particles. However, the mechanisms by which attractive interactions induce and influence velocity alignment remain unclear. To address this question, we conduct numerical simulations using Stochastic Euler Method to investigate cluster behavior and spontaneous global velocity alignment in active particle systems with attractive interactions. The local area fraction of particles and its corresponding probability distribution function are computed to capture the system's cluster behavior. The global velocity alignment order parameter and the polar average parameter are also calculated to characterize the particle velocity directions. Based on whether motion-induced phase separation and crystallization can be achieved, the system is categorized into low, medium, and high filling fraction regimes, and the cluster behavior and velocity alignment within each regime are systematically investigated.
    Spontaneous velocity alignment results from the coupling of self-propulsion and attractive interactions. In the persistent time, feedback regulation involving particle velocities, relative positions, and interaction forces operates simultaneously among neighboring particles. This process leads to the alignment of particle velocities with those of their neighbors, ultimately achieving large-scale alignment. The closer the particles are arranged, the more conducive it is for the coupling of self-propulsion and spatial interactions, thus promoting large-scale spontaneous velocity alignment. The competition between these two effects governs the formation and structure of clusters, ultimately influencing global velocity alignment.
    At low and medium packing fractions, when the attractive interaction dominates and self-propulsion is negligible, particles attract one another to form discrete banded clusters due to the strong attraction and limited range of interaction. Over time, these clusters connect to form a network-like cluster. Small differences in particle velocities are amplified by the banded structure, hindering velocity alignment. In systems with low packing fractions, a thin network-like cluster forms, whereas in systems with medium packing fractions, a thicker network-like cluster forms, leading to lower velocity alignment in the former. As self-propulsion becomes more dominant, the network structure loosens, causing the particle bands to break and reconnect until a more stable block-like cluster structure is formed. The system transitions from a network-like cluster to a block-like cluster, with particles becoming closely packed, resulting in global velocity alignment. When self-propulsion dominates and attraction is negligible, particle motion is primarily driven by self-propulsion, leading to sparse particle distribution or unstable clusters, which results in velocity disorder. Thus, as self-propulsion competes with attractive interactions and becomes dominant, the global velocity alignment increases from low values to a plateau at higher values and then decreases, approaching zero.
    At high packing fractions, the initial distribution of particles is dense. Even when the attractive interaction dominates and self-propulsion is negligible, the system forms a block-like cluster, leading to global velocity alignment. As self-propulsion becomes dominant, the instability of the clusters partially hinders spontaneous velocity alignment. Nevertheless, the particles remain tightly packed, resulting in local velocity alignment. Thus, as self-propulsion transitions from weak to dominant in competition with attractive interactions, global velocity alignment first plateaus at a higher value, then decreases, but remains above 0.5.
    It is important to note that the spontaneous velocity alignment discussed here exhibits a finite size effect. In experimental setups and applications involving active particles, smaller systems are commonly studied. By modulating the balance between self-propulsion and attractive interactions in these systems, a broader range of spontaneous velocity alignment can be achieved, potentially even leading to global velocity alignment.
  • [1]

    Emlen J T 1952 The Auk 69 160

    [2]

    Becco C, Vandewalle N, Delcourt J, Poncin P 2006 Phys. A 367 487

    [3]

    Fletcher D A, Geissler P L 2009 Annu. Rev. Phys. Chem. 60 469

    [4]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006

    [5]

    Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E, Crespi V H 2004J. Am. Chem. Soc. 12613424

    [6]

    Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323

    [7]

    Nelson B J, Kaliakatsos I K, Abbott J J 2010 Annu. Rev. Biomed. Eng. 12 55

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175

    [9]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [10]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [11]

    Grégoire G, Chaté H 2004 Phys. Rev. Lett. 92 025702

    [12]

    Peruani F, Deutsch A, Bär M 2006 Phys. Rev. E 74 030904

    [13]

    Aranson I S, Tsimring L S 2003 Phys. Rev. E 67 021305

    [14]

    Ginelli F, Peruani F, Bär M, Chaté H 2010 Phys. Rev. Lett. 104 184502

    [15]

    Caprini L, Marconi U M B 2021Soft Matter 17 4109

    [16]

    Lushi E, Wioland H, Goldstein R E 2014Proc. Natl. Acad. Sci. 111 9733

    [17]

    He J X, Qin C R, Xu T L, Chen K, Tian W D 2022Acta Phys. Sin. 71150501

    [18]

    Wang J, Xu T, He J, Chen K, Tian W 2023Chin. Phys. B 32 070501

    [19]

    Xu T L, Qin C R, Tang B, Gao J C, Zhou J, Chen K, Zhang T H, Tian W D 2024 J. Chem. Phys. 161064905

    [20]

    Lam K D N T, Schindler M, Dauchot O 2015 New J. Phys. 17 113056

    [21]

    Giavazzi F, Paoluzzi M, Macchi M, Bi D, Scita G, Manning M L, Cerbino R, Marchetti M C 2018 Soft matter 14 3471

    [22]

    Caprini L, Marini Bettolo Marconi U, Puglisi A 2020 Phys. Rev. Lett. 124 078001

    [23]

    Caprini L, Marconi U M B, Maggi C, Paoluzzi M, Puglisi A 2020 Phys. Rev. Res. 2 023321

    [24]

    Kopp R A, Klapp S H 2023Europhys. Lett. 143 17002

    [25]

    Caprini L, Löwen H 2023 Phys. Rev. Lett. 130 148202

    [26]

    Chakraborty S, Das S K 2020 J. Chem. Phys. 153 044905

    [27]

    Barberis L, Peruani F 2019 J. Chem. Phys. 150144905

    [28]

    Hrishikesh B, Mani E 2023 Soft Matter 19 225

    [29]

    Hrishikesh B, Mani E 2022 Phys. Chem. Chem. Phys. 24 19792

    [30]

    Du Q, Faber V, Gunzburger M 1999 SIAM Rev. 41 637

    [31]

    Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G, Pagonabarraga I 2018Phys. Rev. Lett. 121 098003

    [32]

    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V 2008 Proc. Natl. Acad. Sci. 105 1232

    [33]

    Alert R, Trepat X 2020 Annu. Rev. Condens. Matter Phys. 11 77

  • [1] Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia. Law and mechanism of impact velocity on spalling and fracture behavior of single crystal nickel. Acta Physica Sinica, doi: 10.7498/aps.73.20240244
    [2] Huang Xue-Feng, Liu Min, Lu Shan, Zhang Min-Qi, Li Sheng-Ji, Luo Dan. Levitation of air-borne strong-absorbing nanoparticle clusters dominated by photophorestic force and migration behavior under thermophorestic force. Acta Physica Sinica, doi: 10.7498/aps.73.20240288
    [3] Xia Yi-Qi, Shen Zhuang-Lin, Guo Yong-Kun. Spontaneous rotation of ratchet wheel with soft boundary in active particle bath. Acta Physica Sinica, doi: 10.7498/aps.68.20190425
    [4] Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying. Experimental study of clustering behaviors in granular gases. Acta Physica Sinica, doi: 10.7498/aps.65.014502
    [5] Zhang Chun-Yan, Liu Xian-Ming. Dynamic behavior of hydrogen clusters under intense femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.64.163601
    [6] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, doi: 10.7498/aps.62.193104
    [7] Liang Lin-Yun, Lü Guang-Hong. Phase-field modeling of vacancy cluster evolution in Fe. Acta Physica Sinica, doi: 10.7498/aps.62.182801
    [8] Ding Xue-Cheng, Fu Guang-Sheng, Chu Li-Zhi, Deng Ze-Chao, Liang Wei-Hua, Zhao Ya-Jun, Wang Ying-Long. Influence of gas type on velocity splitting of ablated particles. Acta Physica Sinica, doi: 10.7498/aps.61.155207
    [9] Li Guo-Jian, Wang Qiang, Cao Yong-Ze, Lü Xiao, Li Dong-Gang, He Ji-Cheng. Effects of initial temperature and cooling rate on freezing behaviors of metallic clusters. Acta Physica Sinica, doi: 10.7498/aps.60.093601
    [10] Lei Cheng-Xin, Feng Dong-Tai, Wu Zhen-Sen. Influence of impurity on Mueller matrices of randomly distributed cluster agglomerates. Acta Physica Sinica, doi: 10.7498/aps.60.115202
    [11] Ding Xue-Cheng, Fu Guang-Sheng, Liang Wei-Hua, Chu Li-Zhi, Deng Ze-Chao, Wang Ying-Long. Influence of the initial ablated-particle density on distribution of density and velocity of ablated-particles. Acta Physica Sinica, doi: 10.7498/aps.59.3331
    [12] Lei Cheng-Xin, Wu Zhen-Sen. A study of radiative properties of randomly distributed soot aggregates. Acta Physica Sinica, doi: 10.7498/aps.59.5692
    [13] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, doi: 10.7498/aps.58.4826
    [14] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, doi: 10.7498/aps.54.5058
    [15] Le Ren-Chang, Lin Gang-Yong. Theoretical calculation of vertical migration velocity for helium-radon cluster ions under ideal condition. Acta Physica Sinica, doi: 10.7498/aps.54.4113
    [16] Deng Mao-Lin, Hong Ming-Chao, Zhu Wei-Qiu, Wang Yuan-Mei. Stationary solution of motion of active Brownian particle. Acta Physica Sinica, doi: 10.7498/aps.53.2029
    [17] LIU JIAN-SHENG, LI RU-XIN, ZHU PIN-PIN, XU ZHI-ZHAN, LIU JING-RU. DYNAMICS OF LARGE-SIZE ATOMIC CLUSTERS IN ULTRA-SHORT HIGH-INTENSITY LASER PULSES. Acta Physica Sinica, doi: 10.7498/aps.50.1121
    [18] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, doi: 10.7498/aps.50.1512
    [19] Fa Wei, Luo Cheng-lin. . Acta Physica Sinica, doi: 10.7498/aps.49.430
    [20] FU XIN-YU, DONG JIA-QI, YING CHUN-TONG, LIU GUANG-JUN. PARTICLE TRANSPORT FROM TURBULENCE DRIVEN BY-PARALLEL VELOCITY SHEAR. Acta Physica Sinica, doi: 10.7498/aps.46.474
Metrics
  • Abstract views:  269
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回
Baidu
map