-
Granular materials are widely spread in nature and in industry. Owing to the inelastic collisions between particles and frictions among particles, granular systems are dissipative in nature. This intrinsic dissipative nature causes local clustering in granular gas systems. This is a unique phenomenon compared with the molecular gases. Understanding and predicting the condition and parameter values when this phenomenon happens will be helpful for us to gain knowledge of the conditions of clustering or pattern formations in non-equilibrium complex systems. The clustering phenomenon in granular gas is analyzed using phase-separation modeling of van der Waals-like molecules. The results from the model are verified by molecular dynamics numerical simulations. However, due to the influence of the gravity, experimental verification is difficult in laboratory. In this work, we perform an experiment in micro-gravity environment provided by the drop tower of National Microgravity Laboratory Chinese Academy of Science. In the experiment we for the first time observe the phase-separation clustering phenomenon. Comparing the observation condition with the model prediction, we are able to indirectly obtain the restitution coefficients of particles used in the experiment. A model calculation for the spinodal regime under experimental conditions is performed for possible particle restitution coefficients, and a comparison with the experimental observation allows us to justify the values of the restitution coefficients. It is found that the coefficient is larger for bigger particles. For d=2.5mm titanium particles, the restitution coefficient is higher than 0.8; for d=1mm titanium particles, the restitution coefficient is about 0.8, and for d=0.5mm titanium particles, the restitution coefficient is between 0.6 and 0.8. This useful result can be essential for comparing experimental observation with the theoretical and the numerical results, and is crucial to the success in the SJ-10 satellite experiments.
-
Keywords:
- granular gases /
- low-gravity /
- cluster /
- drop tower
[1] Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]
[2] Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259
[3] Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57
[4] Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007
[5] Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641
[6] Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)
[7] McNamara S, Young W R 1994 Phys. Rev. E 50 28
[8] Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301
[9] Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302
[10] Khain E, Meerson B 2002 Phys. Rev. E 66 021306
[11] Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310
[12] Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)
[13] Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304
[14] Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]
[15] Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]
[16] Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 57 4660]
[17] Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304
[18] Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159
[19] Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]
[20] Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355
[21] Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]
[22] Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638
[23] Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635
-
[1] Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]
[2] Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259
[3] Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57
[4] Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007
[5] Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641
[6] Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)
[7] McNamara S, Young W R 1994 Phys. Rev. E 50 28
[8] Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301
[9] Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302
[10] Khain E, Meerson B 2002 Phys. Rev. E 66 021306
[11] Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310
[12] Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)
[13] Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304
[14] Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]
[15] Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]
[16] Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 57 4660]
[17] Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304
[18] Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159
[19] Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]
[20] Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355
[21] Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]
[22] Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638
[23] Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635
Catalog
Metrics
- Abstract views: 7610
- PDF Downloads: 413
- Cited By: 0