- 
				The discovery of ultrafast demagnetization has provided a new means for generating ultrafast spin currents by using an ultrashort laser, potentially enabling faster manipulation of material magnetism. This has sparked research on the transport mechanisms of ultrafast spin currents. However, the basic processes are still poorly understood, especially the factors influencing interlayer spin transfer. In this work, a superdiffusive spin transport model is used to investigate the ultrafast spin transport mechanism in the Ni/Ru/Fe spin valve system, with a particular focus on how interlayer spin transfer affects the ultrafast magnetization dynamics of the ferromagnetic layer. First, by calculating the laser-induced magnetization dynamics of the Ni/Ru/Fe system under different magnetization alignments, the recent experimental findings are validated. Further analysis shows that reducing the thickness of the Ru spacer layer will significantly enhance the spin current intensity and increase the demagnetization difference in the Fe layer, confirming the key role of the hot electron spin current generated by the Ni layer in interlayer spin transport. In addition, the spin decay length of hot electron spin currents in the spacer Ru layer is determined to be approximately 0.5 nm. This work also shows that laser-induced transient magnetization enhancement can be achieved by adjusting the relative laser absorption in the films. These results provide theoretical support for ultrafast magnetic control of future spin valve structures and contribute to the development of spintronics in high-speed information processing and storage applications.- 
										Keywords:
										
- spintronics /
- ultrafast magnetic dynamics /
- spin-polarized transport
 [1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488  Google Scholar Google Scholar[2] Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323  Google Scholar Google Scholar[3] Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71  Google Scholar Google Scholar[4] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703  Google Scholar Google ScholarXu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703  Google Scholar Google Scholar[5] Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401  Google Scholar Google Scholar[6] 芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007  Google Scholar Google ScholarLu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007  Google Scholar Google Scholar[7] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501  Google Scholar Google ScholarYang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501  Google Scholar Google Scholar[8] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731  Google Scholar Google Scholar[9] 李杭, 张新惠 2015 64 177503  Google Scholar Google ScholarLi H, Zhang X H 2015 Acta Phys. Sin. 64 177503  Google Scholar Google Scholar[10] Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286  Google Scholar Google Scholar[11] Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049  Google Scholar Google Scholar[12] Wang C T, Liu Y M 2020 Nano Converg. 7 35  Google Scholar Google Scholar[13] Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709  Google Scholar Google Scholar[14] Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007  Google Scholar Google Scholar[15] Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137  Google Scholar Google Scholar[16] Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601  Google Scholar Google Scholar[17] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250  Google Scholar Google Scholar[18] Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601  Google Scholar Google Scholar[19] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855  Google Scholar Google Scholar[20] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037  Google Scholar Google Scholar[21] Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201  Google Scholar Google Scholar[22] He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883  Google Scholar Google Scholar[23] Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104  Google Scholar Google Scholar[24] Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725  Google Scholar Google Scholar[25] Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429  Google Scholar Google Scholar[26] Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002  Google Scholar Google Scholar[27] Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902  Google Scholar Google Scholar[28] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203  Google Scholar Google Scholar[29] Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109  Google Scholar Google Scholar[30] Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105  Google Scholar Google Scholar[31] Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611  Google Scholar Google Scholar[32] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404  Google Scholar Google Scholar[33] Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511  Google Scholar Google Scholar[34] Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402  Google Scholar Google Scholar
- 
				
    
    
图 1 飞秒激光脉冲诱导的Ni/Ru/Fe自旋阀结构中层间自旋输运示意图. 自旋极化热电子从Ni层通过Ru层转移至Fe层, 引起超快磁动力学. Ni层和Fe层的磁化方向可以为平行或反平行排列 Figure 1. Schematic of ultrafast interlayer spin transport in a Ni/Ru/Fe trilayer structure induced by femtosecond laser pulses. Spin-polarized hot electrons transfer from the Ni layer through the Ru spacer to the Fe layer, triggering ultrafast magnetic dynamics. The magnetization directions of the Ni and Fe layers can be either parallel or antiparallel. 图 2 (a)—(f)计算得到激光激发后的磁动力学, Ni层和Fe层初始的磁化方向为平行(红线)和反平行(蓝线)排列. (a)与(b), (c)与(d), (e)与(f)分别为间隔层dRu = 2, 1.5, 1 nm厚的结果 Figure 2. (a)–(f) Calculated magnetic dynamics after laser excitation, with initial magnetization directions of the Ni and Fe layers aligned parallel (red line) and antiparallel (blue line). (a) and (b), (c) and (d), (e) and (f) show the results for spacer layer thicknesses of dRu = 2, 1.5, and 1 nm, respectively. 图 3 (a) Ru层各位置自旋流js随时间的演化曲线, 以Ni/Ru界面处最大值进行归一化, 插图是以自旋流最大值对位置进行的指数拟合; (b)为图(a)中自旋流所对应的自旋极化率 Figure 3. (a) Time evolution of the spin current js at various positions in the Ru layer, normalized to the maximum at the Ni/Ru interface. The inset shows an exponential fit of the spin current maximum values as a function of position. (b) The corresponding spin polarization of the spin current in panel (a). 图 4 计算得到不同初始磁化方向下Fe层的磁动力学行为, 其中, 飞秒激光仅激发 Ni 层产生非平衡热电子, 浅灰色阴影表示激光脉冲的时间分布 Figure 4. Calculated magnetic dynamics of Fe layer under different initial magnetization directions. The femtosecond laser excites only the Ni layer, generating nonequilibrium hot electrons. The light gray shading indicates the temporal profile of the laser pulse. 
- 
				
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488  Google Scholar Google Scholar[2] Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323  Google Scholar Google Scholar[3] Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71  Google Scholar Google Scholar[4] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703  Google Scholar Google ScholarXu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703  Google Scholar Google Scholar[5] Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401  Google Scholar Google Scholar[6] 芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007  Google Scholar Google ScholarLu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007  Google Scholar Google Scholar[7] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501  Google Scholar Google ScholarYang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501  Google Scholar Google Scholar[8] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731  Google Scholar Google Scholar[9] 李杭, 张新惠 2015 64 177503  Google Scholar Google ScholarLi H, Zhang X H 2015 Acta Phys. Sin. 64 177503  Google Scholar Google Scholar[10] Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286  Google Scholar Google Scholar[11] Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049  Google Scholar Google Scholar[12] Wang C T, Liu Y M 2020 Nano Converg. 7 35  Google Scholar Google Scholar[13] Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709  Google Scholar Google Scholar[14] Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007  Google Scholar Google Scholar[15] Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137  Google Scholar Google Scholar[16] Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601  Google Scholar Google Scholar[17] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250  Google Scholar Google Scholar[18] Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601  Google Scholar Google Scholar[19] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855  Google Scholar Google Scholar[20] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037  Google Scholar Google Scholar[21] Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201  Google Scholar Google Scholar[22] He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883  Google Scholar Google Scholar[23] Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104  Google Scholar Google Scholar[24] Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725  Google Scholar Google Scholar[25] Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429  Google Scholar Google Scholar[26] Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002  Google Scholar Google Scholar[27] Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902  Google Scholar Google Scholar[28] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203  Google Scholar Google Scholar[29] Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109  Google Scholar Google Scholar[30] Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105  Google Scholar Google Scholar[31] Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611  Google Scholar Google Scholar[32] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404  Google Scholar Google Scholar[33] Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511  Google Scholar Google Scholar[34] Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 3070
- PDF Downloads: 252
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							