Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate

DAI Shuo LI Zhen ZHANG Chao YU Jing ZHAO Xiaofei WU Yang MAN Baoyuan

Citation:

Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate

DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Surface enhanced Raman spectroscopy (SERS) can provide rich molecular structure information about ultra-sensitive, non-destructive, and rapid detection, with accuracy down to the single-molecule level. It has been widely applied to physics, chemistry, biomedicine, environmental science, materials science and other fields. Combining the advantages of metals and two-dimensional (2D) nanomaterials, various 2D metal composite structures have been proposed for SERS. However, the contribution of 2D nanomaterials in Raman enhancement is often limited. In this work, vertically aligned MoS2 nanosheet composite with silver nanoparticles (Ag NPs) is proposed for SERS detection. Large-area vertically aligned MoS2 nanosheets, which are grown directly on molybdenum (Mo) foil by using hydrothermal method, can effectively enhance molecular adsorption, light absorption, and provide dual electromagnetic and chemical enhancement. Furthermore, annealing treatment of the MoS2 nanosheets significantly improves the efficiency of charge transfer between Ag NPs and MoS2, thereby increasing the chemical contribution to SERS. The results demonstrate that the annealed MoS2/Ag substrate exhibits outstanding SERS performance, with a detection limit for R6G molecules as low as 10–12 M, which is four orders of magnitude lower than that of the unannealed substrate. The enhancement factor (EF) is calculated to be approximately 1.08×109, approaching the sensitivity required for single-molecule detection. Additionally, the substrate has high signal reproducibility at low concentrations, enabling ultra-sensitive detection of pesticide residues in aquatic products.
  • 图 1  SERS基底的制备流程示意图

    Figure 1.  Schematic diagram of the preparation process of the SERS substrate.

    图 2  基底的SEM和EDS图 (a), (b)不同放大倍数下退火后大面积竖直MoS2 纳米片SEM图; (c)未退火MoS2 纳米片SEM图; (d)退火后MoS2/Ag SERS基底的SEM图; (e), (f) 退火后MoS2 SERS基底上Mo元素和S元素的EDS图

    Figure 2.  SEM and EDS images of substrates: (a), (b) SEM images of large-area vertical MoS2 nanosheets after annealing at different magnifications; (c) SEM image of MoS2 nanosheets before annealing; (d) SEM image of annealed MoS2/Ag SERS substrate; (e), (f) EDS images of Mo and S elements on MoS2 SERS substrate after annealing.

    图 3  基底的拉曼光谱和XPS光谱 (a)未退火和退火后MoS2纳米片的拉曼光谱; 退火后MoS2 /Ag、未退火MoS2 /Ag和未退火MoS2 SERS基底的(b)Mo 3d和(c)S 2p XPS光谱; (d)未退火和退火后MoS2/Ag SERS基底的Ag 3d XPS光谱

    Figure 3.  Raman spectra and XPS spectra of substrates: (a) Raman spectra of MoS2 nanosheets before and after annealing; (b) Mo 3d and (c) S 2p XPS spectra of annealed MoS2 /Ag, original MoS2 /Ag and unannealed MoS2 SERS substrate; (d) Ag 3d XPS spectra of MoS2 /Ag SERS substrate before and after annealing.

    图 4  MoS2和MoS2/Ag基底的SERS性能 (a)不同浓度R6G分子在竖直MoS2纳米片基底上的SERS光谱; (b) R6G分子(10–6 mol/L)在不同厚度Ag复合未退火MoS2基底上的SERS光谱

    Figure 4.  SERS performance of MoS2 and MoS2/Ag substrates: (a) SERS spectra of different concentrations of R6G molecules on vertically aligned MoS2 nanosheet substrates; (b) SERS spectra of R6G molecules at a concentration of 10–6 mol/L on unannealed MoS2 substrates composite with Ag of different thicknesses.

    图 5  MoS2/Ag基底的SERS性能 (a) 经过退火和未经退火MoS2/Ag基底采集R6G (10–5 mol/L)分子的SERS光谱; (b)不同浓度R6G分子在未退火MoS2/Ag基底上的SERS光谱; (c) 不同浓度R6G分子在退火后MoS2/Ag基底上的SERS光谱; (d) 双对数坐标下, 吸附在退火后MoS2/Ag基底上的R6G分子在613 cm–1处的拉曼峰强度与R6G分子浓度的关系

    Figure 5.  SERS performance of MoS2/Ag substrates: (a) Comparison of SERS spectra of R6G (10–5 mol/L) molecules collected on annealed and original MoS2/Ag substrates; (b) SERS spectra of R6G molecules with different concentrations on original MoS2/Ag substrate; (c) SERS spectra of R6G molecules with different concentrations on annealed MoS2/Ag substrate; (d) in double logarithmic coordinates, the relationship between the Raman peak intensity of R6G molecules adsorbed on the annealed MoS2/Ag substrate at 613 cm–1 and the concentration of R6G molecules.

    图 6  基底的SERS增强机制分析和检测性能 (a)经过退火和未经退火MoS2/Ag基底的反射光谱; (b) MoS2/Ag基底电荷转移分析; (c)经过退火和未经退火MoS2/Ag基底上R6G分子的电荷转移度(ρCT); (d) R6G (10–12 mol/L)分子在退火后MoS2/Ag 基底的多个随机位置上的SERS光谱; (e)不同浓度CV分子在MoS2/Ag上的SERS光谱; (f)不同浓度MB分子在MoS2/Ag上的SERS光谱

    Figure 6.  Analysis of SERS enhancement mechanism and detection performance of substrates: (a) Diffuse reflectance spectra of annealed and original MoS2/Ag substrates; (b) charge transfer analysis of MoS2/Ag substrate; (c) charge transfer degree (ρCT) of R6G molecules on annealed MoS2/Ag and original MoS2/Ag substrate; (d)SERS spectra of R6G (10–12 mol/L) molecules at multiple random positions on annealed MoS2/Ag substrate; (e) SERS spectra of CV molecules with different concentrations on annealed MoS2/Ag substrate; (f) SERS spectra of MB molecules with different concentrations on annealed MoS2/Ag substrate.

    Baidu
  • [1]

    Brosseau C L, Colina A, Perales-Rondon J V, Wilson A J, Joshi P B, Ren B, Wang X 2023 Nat. Rev. Methods Primers 3 79Google Scholar

    [2]

    Hu H F, Tian Y, Chen P P, Chu W G 2024 Adv. Mater. 36

    [3]

    Peng Y S, Lin C L, Li Y Y, Gao Y, Wang J, He J, Huang Z R, Liu J J, Luo X Y, Yang Y 2022 Matter 5 694Google Scholar

    [4]

    Logan N, Cao C, Freitag S, Haughey S A, Krska R, Elliott C T 2024 Adv. Mater. 36

    [5]

    Itoh T, Prochazka M, Dong Z C, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev. 123 1552Google Scholar

    [6]

    Li L H, Jiang R T, Shan B B, Lu Y X, Zheng C, Li M 2022 Nat. Commun. 13 5249Google Scholar

    [7]

    Jensen L, Aikens C M, Schatz G C 2008 Chem. Soc. Rev. 37 1061Google Scholar

    [8]

    Feng E D, Zheng T T, He X X, Chen J Q, Gu Q Y, He X, Hu F H, Li J H, Tian Y 2023 Angew. Chem. Int. Ed. 62

    [9]

    Tang X, Fan X C, Zhou J, Wang S, Li M Z, Hou X Y, Jiang K W, Ni Z H, Zhao B, Hao Q, Qiu T 2023 Nano Lett. 23 7037Google Scholar

    [10]

    Yang L, Kim T H, Cho H Y, Luo J, Lee J M, Chueng S T D, Hou Y N, Yin P T T, Han J Y, Kim J H, Chung B G, Choi J W, Lee K B 2021 Adv. Funct. Mater. 31 2006918Google Scholar

    [11]

    Jiang Y, Wang X C, Zhao G, Shi Y Y, Wu Y, Yang H L, Zhao F Y 2024 Water Res. 255 121444Google Scholar

    [12]

    Hao N J, Liu P Z, Bachman H, Pei Z C, Zhang P R, Rufo J, Wang Z Y, Zhao S G, Huang T J 2020 ACS Nano 14 6150Google Scholar

    [13]

    Butmee P, Samphao A, Tumcharern G 2022 J. Hazard. Mater. 437 129344Google Scholar

    [14]

    Zhou L, Zhou J, Lai W, Yang X D, Meng J, Su L B, Gu C J, Jiang T, Pun E Y B, Shao L Y, Petti L, Sun X W, Jia Z H, Li Q X, Han J G, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [15]

    Pan H M, Dong Y, Gong L B, Zhai J Y, Song C Y, Ge Z L, Su Y, Zhu D, Chao J, Su S, Wang L H, Wan Y, Fan C H 2022 Biosens. Bioelectron. 215 114553Google Scholar

    [16]

    Zhou P Y, Cheng S Y, Li Q, Pang Y F, Xiao R 2023 Chem. Eng. J. 471 144514Google Scholar

    [17]

    Jalali M, Mata C D, Montermini L, Jeanne O, Hosseini, II, Gu Z L, Spinelli C, Lu Y, Tawil N, Guiot M C, He Z, Wachsmann-Hogiu S, Zhou R H, Petrecca K, Reisner W W, Rak J, Mahshid S 2023 ACS Nano 17 12052Google Scholar

    [18]

    Wang X Y, Zhang Y Q, Yu J H, Xie X, Deng R P, Min C J, Yuan X C 2022 ACS Nano 16 18621Google Scholar

    [19]

    Choi J H, Kim T H, El-said W A, Lee J H, Yang L T, Conley B, Choi J W, Lee K B 2020 Nano Lett. 20 7670Google Scholar

    [20]

    Lin C L, Liang S S, Peng Y S, Long L, Li Y Y, Huang Z R, Long N V, Luo X Y, Liu J J, Li Z Y, Yang Y 2022 Nanomicro Lett. 14 75

    [21]

    Son W K, Choi Y S, Han Y W, Shin D W, Min K Y H, Shin J, Lee M J, Son H, Jeong D H, Kwak S Y 2023 Nat. Nanotechnol. 18 205Google Scholar

    [22]

    Ge Y C, Yang Y, Zhu Y J, Yuan M L, Sun L B, Jiang D F, Liu X H, Zhang Q W, Zhang J Y, Wang Y 2024 Small 20

    [23]

    Yuan H, Yu S, Kim M, Lee J E, Kang H, Jang D, Ramasamy M S, Kim D H 2022 Sens. Actuators B Chem. 371 132453Google Scholar

    [24]

    Yu L L, Lu L, Zeng L H, Yan X H, Ren X F, Wu J 2021 J. Phys. Chem. C 125 1940Google Scholar

    [25]

    Zhai Y J, Yang H, Zhang S N, Li J H, Shi K X, Jin F J 2021 J. Mater. Chem. C 9 6823Google Scholar

    [26]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385Google Scholar

    [27]

    Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, de Vasconcellos S M, Bratschitsch R, De Lara D P, Rohlfing M, Castellanos-Gomez A 2018 Nanomaterials 8 725Google Scholar

    [28]

    Liu H Q, Yao C B, Li J, Sun W J, Jiang C H 2022 Appl. Surf. Sci. 571 151176Google Scholar

    [29]

    Yu D H, Yu X D, Wang C H, Liu X C, Xing Y 2012 ACS Appl. Mater. Interfaces 4 2781Google Scholar

    [30]

    Wang P, Liang O, Zhang W, Schroeder T, Xie Y H 2013 Adv. Mater. 25 4918Google Scholar

    [31]

    Jones L A H, Xing Z D, Swallow J E N, Shiel H, Featherstone T J, Smiles M J, Fleck N, Thakur P K, Lee T L, Hardwick L J, Scanlon D O, Regoutz A, Veal T D, Dhanak V R 2022 J. Phys. Chem. C 126 21022Google Scholar

    [32]

    Choi S, Shaolin Z, Yang W 2014 J. Korean Phys. Soc. 64 1550Google Scholar

    [33]

    Dieringer J A, Wustholz K L, Masiello D J, Camden J P, Kleinman S L, Schatz G C, Van Duyne R P 2009 J. Am. Chem. Soc. 131 849Google Scholar

    [34]

    Kaushik A, Singh J, Soni R, Singh J P 2023 ACS Appl. Nano Mater. 6 9236Google Scholar

    [35]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803Google Scholar

    [36]

    Chenal C, Birke R L, Lombardi J R 2008 ChemPhysChem 9 1617Google Scholar

    [37]

    Lombardi J R, Birke R L 2008 J. Phys. Chem. C 112 5605Google Scholar

  • [1] TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun. Charge transfer characteristics of Au adsorption on CeO2(111) surface. Acta Physica Sinica, doi: 10.7498/aps.74.20241522
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, doi: 10.7498/aps.69.20191636
    [3] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, doi: 10.7498/aps.68.20190276
    [4] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, doi: 10.7498/aps.67.20180650
    [5] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, doi: 10.7498/aps.67.20180759
    [6] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, doi: 10.7498/aps.67.20172220
    [7] Jiang Zhi-Yu, Wang Zi-Yi, Wang Jin-Jin, Zhang Rong-Jun, Zheng Yu-Xiang, Chen Liang-Yao, Wang Song-You. Theoretical study on the optical response features of silver nanoparticles and arrays. Acta Physica Sinica, doi: 10.7498/aps.65.207802
    [8] Chen Xin, Yan Xiao-Hong, Xiao Yang. Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN. Acta Physica Sinica, doi: 10.7498/aps.64.087102
    [9] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, doi: 10.7498/aps.64.137102
    [10] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, doi: 10.7498/aps.64.137104
    [11] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, doi: 10.7498/aps.64.147303
    [12] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.61.037805
    [13] Han Tao, Meng Fan-Ying, Zhang Song, Wang Jian-Qiang, Cheng Xue-Mei. Theoretical investigation of anti-reflection properties of Ag-nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.60.027303
    [14] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.56.2986
    [15] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, doi: 10.7498/aps.55.723
    [16] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, doi: 10.7498/aps.54.2859
    [17] Wu Qing-Song, Zhao Yan, Zhang Cai-Bei, Li Feng. Self-assembling behavior and optical properties of triangular silver nanoplates. Acta Physica Sinica, doi: 10.7498/aps.54.1452
    [18] Xie Jiang, Wen Jian-Zhong, Wang Guo-Ping, Wang Jian-Bo. Large area deposition of homogeneous Ag nanoparticles on polymeric surface and their applications. Acta Physica Sinica, doi: 10.7498/aps.54.242
    [19] Cao Zhu-Rong, Cai Xiao-Hong, Yu De-Yang, Yang Wei, Lu Rong-Chun, Shao Cao-Jie, Chen Xi-Meng. Study of the electron transfer in Xeq+-He collisions. Acta Physica Sinica, doi: 10.7498/aps.53.2943
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, doi: 10.7498/aps.49.1561
Metrics
  • Abstract views:  355
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2024
  • Accepted Date:  06 January 2025
  • Available Online:  14 January 2025

/

返回文章
返回
Baidu
map