搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

链间耦合对极化子非弹性散射性质的影响

邸冰 王亚东 张亚琳

引用本文:
Citation:

链间耦合对极化子非弹性散射性质的影响

邸冰, 王亚东, 张亚琳

The effect of interchain coupling on inelastic scattering of oppositely charged polarons

Di Bing, Wang Ya-Dong, Zhang Ya-Lin
PDF
导出引用
  • 基于一维紧束缚的Su-Schreiffer-Heeger模型, 采用非绝热动力学方法, 研究了链间耦合对聚合物中极化子对非弹性散射性质的影响: 激子的产生依赖于链间耦合, 随着耦合强度的增加, 正负极化子对的电子波函数交叠增强, 利于提高激子的产率; 当耦合区域是极化子的宽度时, 正负极化子对波函数的耦合最充分、耦合最强, 电荷跃迁更容易, 激子产率最大.
    Within an one-dimensional tight-binding Su-Schreiffer-Heeger model, we investigate the effect of interchain coupling on inelastic scattering of oppositely charged polarons in conjugated polymer by using a nonadiabatic evolution method. It is found that the yield of the neutral exciton depends sensitively on the interchain coupling. The yield of the neutral exciton increases with the enhancement of overlapping which can make the wave functions of oppositely charged polarons more largely overlapped. The formation yield of excitons also increases with the number of overlapping sites increasing to its maximum value, where the length of overlapping sites is almost of the same order of magnitude as the width of the polaron, the reason is that the number of overlapping sites can affect the overlap of oppositely charged polaron wave functions. In turn, the charge transfer between them depends on the overlap of their wave functions. Therefore, when the size of overlapping sites is almost of the same order of magnitude as the width of the polaron, their wave functions have a largest overlap, thereby making charge transfer more easily. So the yield of excitons has the largest value.
    • 基金项目: 国家自然科学基金(批准号: 11074064)、教育部科学技术研究重点项目基金(批准号: 210021)和河北省自然科学基金(批准号: A2010000357)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074064), the Foundation for Key Program of Ministry of Education, China (Grant No. 210021), and the Natural Science Foundation of Hebei Province, China (Grant No. A2010000357).
    [1]

    Burroughes J H, Bradley D D C, Brown A R, Mark R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Cao Y, Parker L D, Yu G, Zhang C, Heeger A J 1999 Nature 397 414

    [3]

    Shuai Z, Beoljonne D, Silbey R J, Bredas J L 2000 Phys. Rev. Lett. 84 131

    [4]

    Ye A, Shuai Z, Bredas J L 2002 Phys. Rev. B 65 5208

    [5]

    Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V 2001 Nature 409 494

    [6]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [7]

    Friend R H, Bradley D D D, Dos Santos D A, Bredas J L, Logdlund M, Salanech W R 1999 Nature 397 121

    [8]

    Wohlgenannt M, Jiang X M, Vardeny Z V, Janssen R A 2002 J. Phys. Rev. Lett. 88 197401

    [9]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Organic Electron. 11 279

    [10]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310

    [11]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502

    [12]

    Li S, Tong G P, George T F 2009 J. Appl. Phys. 106 074513

    [13]

    Rakhmanova S V, Conwell E M 2000 Synthetic Metals 110 37

    [14]

    Liu W, Li Y, Qu Z, Gao K, Yin S, Liu D S 2009 Chin. Phys. Lett. 26 037101

    [15]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 59 3461]

    [16]

    Di B, An Z, Li Y C, Wu C Q 2007 Eur. Phys. Lett. 79 17002

    [17]

    Di B, Meng Y, An Z, Li Y C 2008 Chin. Phys. Lett. 25 679

    [18]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547 (in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣洁, 解士杰 2003 52 2547]

    [19]

    An Z, Di B, Zhao H, Wu C Q 2008 Eur. Phys. J. B 63 71

    [20]

    Di B, Meng Y, Wang Y D, Liu X J, An Z 2011 J. Phys. Chem. B 115 964

    [21]

    Di B, Meng Y, Wang Y D, Liu X J, An Z 2011 J. Phys. Chem. B 115 9339

    [22]

    Baeriswyl D, Maki K 1988 Phys. Rev. B 38 8135

    [23]

    Blackman J A, Sabra M K 1993 Phys. Rev. B 47 15437

    [24]

    Liu W, Li H H, Liu D S 2010 Acta Phys. Sin. 59 6405 (in Chinese) [刘文, 李海宏, 刘德胜 2010 59 6405]

    [25]

    Johansson Å, Stafström S 2001 Phys. Rev. Lett. 86 3602

    [26]

    Johansson Å, Stafström S 2002 Phys. Rev. B 66 085208

    [27]

    Meng Y, Di B, Liu X J, An Z, Wu C Q 2008 J. Chem. Phys. 128 184903

    [28]

    Meng Y, An Z 2010 Eur. Phys. J. B 74 313

    [29]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [30]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

    [31]

    Takayama H, Lin-Liu Y R, Maki K 1980 Phys. Rev. B 21 2388

    [32]

    Brankin R W, Gladwell I, Shampine L F RKSUITE: Software for ODE IVPS (www.netlib.org) [2012-12-10]

    [33]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407

  • [1]

    Burroughes J H, Bradley D D C, Brown A R, Mark R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Cao Y, Parker L D, Yu G, Zhang C, Heeger A J 1999 Nature 397 414

    [3]

    Shuai Z, Beoljonne D, Silbey R J, Bredas J L 2000 Phys. Rev. Lett. 84 131

    [4]

    Ye A, Shuai Z, Bredas J L 2002 Phys. Rev. B 65 5208

    [5]

    Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V 2001 Nature 409 494

    [6]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [7]

    Friend R H, Bradley D D D, Dos Santos D A, Bredas J L, Logdlund M, Salanech W R 1999 Nature 397 121

    [8]

    Wohlgenannt M, Jiang X M, Vardeny Z V, Janssen R A 2002 J. Phys. Rev. Lett. 88 197401

    [9]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Organic Electron. 11 279

    [10]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310

    [11]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502

    [12]

    Li S, Tong G P, George T F 2009 J. Appl. Phys. 106 074513

    [13]

    Rakhmanova S V, Conwell E M 2000 Synthetic Metals 110 37

    [14]

    Liu W, Li Y, Qu Z, Gao K, Yin S, Liu D S 2009 Chin. Phys. Lett. 26 037101

    [15]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 59 3461]

    [16]

    Di B, An Z, Li Y C, Wu C Q 2007 Eur. Phys. Lett. 79 17002

    [17]

    Di B, Meng Y, An Z, Li Y C 2008 Chin. Phys. Lett. 25 679

    [18]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547 (in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣洁, 解士杰 2003 52 2547]

    [19]

    An Z, Di B, Zhao H, Wu C Q 2008 Eur. Phys. J. B 63 71

    [20]

    Di B, Meng Y, Wang Y D, Liu X J, An Z 2011 J. Phys. Chem. B 115 964

    [21]

    Di B, Meng Y, Wang Y D, Liu X J, An Z 2011 J. Phys. Chem. B 115 9339

    [22]

    Baeriswyl D, Maki K 1988 Phys. Rev. B 38 8135

    [23]

    Blackman J A, Sabra M K 1993 Phys. Rev. B 47 15437

    [24]

    Liu W, Li H H, Liu D S 2010 Acta Phys. Sin. 59 6405 (in Chinese) [刘文, 李海宏, 刘德胜 2010 59 6405]

    [25]

    Johansson Å, Stafström S 2001 Phys. Rev. Lett. 86 3602

    [26]

    Johansson Å, Stafström S 2002 Phys. Rev. B 66 085208

    [27]

    Meng Y, Di B, Liu X J, An Z, Wu C Q 2008 J. Chem. Phys. 128 184903

    [28]

    Meng Y, An Z 2010 Eur. Phys. J. B 74 313

    [29]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [30]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

    [31]

    Takayama H, Lin-Liu Y R, Maki K 1980 Phys. Rev. B 21 2388

    [32]

    Brankin R W, Gladwell I, Shampine L F RKSUITE: Software for ODE IVPS (www.netlib.org) [2012-12-10]

    [33]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407

  • [1] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应.  , 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [2] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光.  , 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [3] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究.  , 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [4] 严大东, 张兴华. 聚合物结晶理论进展.  , 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [5] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响.  , 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [6] 袁晓娟, 袁慧敏, 张成强, 王文静, 于元勋, 刘德胜. 共轭聚合物中均匀无序对极化子输运动力学的影响.  , 2015, 64(6): 067201. doi: 10.7498/aps.64.067201
    [7] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究.  , 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [8] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子.  , 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [9] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究.  , 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [10] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [11] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究.  , 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [12] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究.  , 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [13] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究.  , 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [14] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级.  , 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [15] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅.  , 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [16] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学.  , 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [17] 曹万强, 李景德. 聚合物介电弛豫的温度特性.  , 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [18] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道.  , 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [19] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算).  , 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
    [20] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子.  , 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
计量
  • 文章访问数:  6030
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-10
  • 修回日期:  2013-01-11
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map