-
In non-central relativistic heavy-ion collisions, the large initial orbital angular momentum results in strong vorticity fields in the quark-gluon plasma, which polarize partons through the spin-orbit coupling. The global polarization of quark matter will be converted to the global polarization of baryons and the global spin alignment of vector mesons. The spin alignment refers to the
$\rho_{00}$ element of the spin density matrix for vector mesons. When a vector meson decays to two pseudoscalar mesons, the polar angle distribution for the decay product depends on$\rho_{00}$ , through which the spin alignment can be measured. Theoretical studies show that the global spin polarization of baryons reflects the space-time average of the quark polarization, while the spin alignment of vector mesons reflects the local phase space correlation between the polarization of quark and antiquark. In this article, we review recent theoretical works about the spin alignment of vector mesons. We consider a non-relativistic quark coalescence model in spin and phase space. Within this model, the spin alignment of the vector meson can be described through the phase space correlation of quark's and antiquark's polarization. The contributions to the spin alignment of ϕ mesons from vorticity fields, electromagnetic fields, and effective ϕ meson fields are discussed. The spin alignment of vector mesons opens a new window for the properties of strong interaction fields in heavy-ion collisions.-
Keywords:
- global spin polarization /
- spin alignment of vector mesons /
- spin-orbit coupling /
- quark coalescence model /
- heavy ion collisions
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar
[2] Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar
[3] Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901
[4] Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar
[5] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar
[6] Wang Q 2017 Nucl. Phys. A 967 225Google Scholar
[7] Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195
[8] Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281
[9] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar
[10] 高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 72 072501
Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta. Phys. Sin. 72 072501
[11] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
[12] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar
[13] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar
[14] Adam J, Adamczyk L, Adams J R, et al. 2018 Phys. Rev. C 98 014910Google Scholar
[15] Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar
[16] Abou Yassine R, Adamczewski-Musch J, Asal C, et al. 2022 Phys. Lett. B 835 137506Google Scholar
[17] Acharya S, Adamova D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar
[18] Abdallah M S, Aboona B E, Adam J, et al. 2022 Nature 614 355
[19] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar
[20] Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar
[21] Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar
[22] Gao J H 2021 Phys. Rev. D 104 076016Google Scholar
[23] Mueller B, Yang D L 2022 Phys. Rev. D 105 1
[24] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2205.15689
[25] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2206.05868
[26] Li F, Liu Y F S 2022 e-Print: 2206.11890
[27] Wanger D, Weickgenannt N, Speranza E 2022 e-Print: 2207.01111
[28] 孙旭, 周晨升, 陈金辉, 陈振宇, 马余刚, 唐爱洪, 徐庆华 2023 72 072401
Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta. Phys. Sin. 72 072401
[29] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 Accepted
Shou Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta. Phys. Sin. Accepted
[30] 侯德富, 黄梅, 马国亮 2023 Accepted
Hou D F, Huang M, Ma G L 2023 Acta. Phys. Sin. Accepted
[31] 高建华, 盛欣力, 王群, 庄鹏飞 2023 Accepted
Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta. Phys. Sin. Accepted
[32] 黄旭光, 浦实 2023 72 071202
Huang X G, Pu S 2023 Acta. Phys. Sin. 72 071202
[33] Bacchetta A, Mulders P J 2000 Phys. Rev. D 62 114004Google Scholar
[34] Faccioli P, Lourenco C, Seixas J, Wohri H K 2010 Eur. Phys. J. C 69 657Google Scholar
[35] Li Z, Zha W, Tang Z 2022 Phys. Rev. C 106 064908Google Scholar
-
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar
[2] Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar
[3] Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901
[4] Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar
[5] Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar
[6] Wang Q 2017 Nucl. Phys. A 967 225Google Scholar
[7] Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195
[8] Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281
[9] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar
[10] 高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 72 072501
Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta. Phys. Sin. 72 072501
[11] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
[12] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar
[13] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar
[14] Adam J, Adamczyk L, Adams J R, et al. 2018 Phys. Rev. C 98 014910Google Scholar
[15] Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar
[16] Abou Yassine R, Adamczewski-Musch J, Asal C, et al. 2022 Phys. Lett. B 835 137506Google Scholar
[17] Acharya S, Adamova D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar
[18] Abdallah M S, Aboona B E, Adam J, et al. 2022 Nature 614 355
[19] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar
[20] Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar
[21] Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar
[22] Gao J H 2021 Phys. Rev. D 104 076016Google Scholar
[23] Mueller B, Yang D L 2022 Phys. Rev. D 105 1
[24] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2205.15689
[25] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2206.05868
[26] Li F, Liu Y F S 2022 e-Print: 2206.11890
[27] Wanger D, Weickgenannt N, Speranza E 2022 e-Print: 2207.01111
[28] 孙旭, 周晨升, 陈金辉, 陈振宇, 马余刚, 唐爱洪, 徐庆华 2023 72 072401
Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta. Phys. Sin. 72 072401
[29] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 Accepted
Shou Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta. Phys. Sin. Accepted
[30] 侯德富, 黄梅, 马国亮 2023 Accepted
Hou D F, Huang M, Ma G L 2023 Acta. Phys. Sin. Accepted
[31] 高建华, 盛欣力, 王群, 庄鹏飞 2023 Accepted
Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta. Phys. Sin. Accepted
[32] 黄旭光, 浦实 2023 72 071202
Huang X G, Pu S 2023 Acta. Phys. Sin. 72 071202
[33] Bacchetta A, Mulders P J 2000 Phys. Rev. D 62 114004Google Scholar
[34] Faccioli P, Lourenco C, Seixas J, Wohri H K 2010 Eur. Phys. J. C 69 657Google Scholar
[35] Li Z, Zha W, Tang Z 2022 Phys. Rev. C 106 064908Google Scholar
Catalog
Metrics
- Abstract views: 3901
- PDF Downloads: 126
- Cited By: 0