-
Birefringence, as a fundamental parameter of optical crystals, plays a vital role in numerous optical applications such as phase modulation, light splitting, and polarization, making them key materials in laser science and technology. The significant birefringence of vanadate polyhedra provides a new approach for developing birefringent materials. In this study, first-principles calculations are used to investigate the band structures, density of states (DOS), electron localization functions (ELF), and birefringence of four alkali metal vanadate crystals AV3O8 (A=Li, Na, K, Rb). The computational results show that all AV3O8 crystals have indirect band gaps, with values of 1.695, 1.898, 1.965, and 1.984 eV for LiV3O8, NaV3O8, KV3O8, and RbV3O8, respectively. The DOS analysis reveals that near the Fermi level, the conduction band minimum (CBM) in these vanadates is predominantly occupied by the outermost orbitals of V atoms, while the valence band maximum (VBM) is primarily contributed by O-2p orbitals. The O-2p orbitals also exhibit strong localization near the Fermi level. Combined with HOMO-LUMO (Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital) analysis and population analysis, the bonding interactions in all four crystals mainly arise from the hybridization between V-3p and O-2p orbitals, indicating strong covalent bonding in V-O bonds. Through the analysis of structure-property relationships, the large birefringence is primarily attributed to the pronounced structural anisotropy, high anisotropy index of responsive electron distribution, unique arrangement of anionic groups, and d-p orbital hybridization between V-3d and O-2p orbitals. The calculated birefringence values at a wavelength of 1064 nm for LiV3O8, NaV3O8, KV3O8, and RbV3O8 are 0.28, 0.30, 0.28, and 0.27, respectively.
-
Keywords:
- alkali metal vanadate /
- first principles /
- electronic structure /
- birefringence
-
[1] Pedrotti F L, Pedrotti L M, Pedrotti L S 2018Introduction to optics [England: Cambridge University Press] pp333-360
[2] Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004Inorg. Chem. 43 8555
[3] Nomura H, Furutono Y 2008Microelectron. Eng. 85 1671
[4] Aoki K, Miyazaki H T, Hirayama H 2003Nat. Mater. 2 117
[5] Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014MICROMACHINES-BASEL 5 825
[6] Li R 2013Z KRIST-CRYST MATER 228 526
[7] Levy M, Jalali A A, Huang X 2009J MATER SCI-MATER EL 20: 43
[8] Zhang H, Zhang M, Pan S, Yang Z, Wang Z, Bian Q, Poeppelmeier K R 2015Cryst. Growth Des. 15 523
[9] Ghosh G 1999Opt. Commun. 163 95
[10] Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006Proc. SPIE 6119 136
[11] Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998J. Cryst. Growth 191 517-519
[12] Appel R, Dyer C D, Lockwood J N 2002Appl. Opt. 41 2470
[13] Cyranoski D 2009Nature 457 953
[14] Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331
[15] Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499
[16] Vodchits A I, Orlovich V A, Apanasevich P A 2012J. Appl. Spectrosc. 78 918
[17] Yu H, Liu J, Zhang H, Kaminskii A. A, Wang Z, Wang J 2014Laser Photonics Rev. 8 847-864
[18] Lei B H, Kong Q, Yang Z, Yang Y, Wang Y, Pan S 2016J. Mater. Chem. C 4 6295
[19] Li K, Zhang X, Chai B, Yu H, Hu Z, Wang J, Wu H Chem.-Eur. J. e202403515
[20] Li K, Wu H, Yu H, Hu Z, Wang J, Wu Y 2024Chem. Commun. 60 12734
[21] Lei B H, Yang Z, Pan S 2017Chem. Commun. 53 2818
[22] Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024J. Mater. Chem. C 12 7286
[23] Zhang S, Dong L, Xu B, Chen H, Huo H, Liang F, Lin Z 2024Inorg. Chem. Front. 11 5528
[24] Cheng J, Xu D, Lu J, Zhang F, Hou X 2023Inorg. Chem. 62 20340
[25] Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y 2017Small 13 1603148
[26] Cao X, Yang Q, Zhu L, Xie L 2018Ionics 24 943
[27] Yang H, Li J, Zhang X G, Jin Y L 2008J. Mater. Process. Technol. 207 265
[28] Zhu L, Li W, Xie L, Yang Q, Cao X 2019Chem. Eng. J. 372 1056
[29] Feng L, Zhang W, Xu L, Li D, Zhang Y 2020Solid State Sci. 103 106187
[30] Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020J. Power Sources 478 229072
[31] Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021Materials 14 6976
[32] Wu W, Ding J, Peng H, Li G 2011MATER LETT 65 2155
[33] Zhu J, Li X, Chen S, Huang C, Feng J, Kuang Q, Zhao Y 2020Electrochim. Acta 355 136799
[34] Wadsley A D 1957Acta Crystallogr. 10 261
[35] Bachmann H G, Barnes W H 1962CAN MINERAL 7 219
[36] Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014Inorg. Chem. 53 1764
[37] Oka Y, Yao T, Yamamoto N. 1997Mater. Res. Bull. 32 1201
[38] Segall M D, Lindan P J D, Probert M J 2002J. Phys.: Condens. Matter 14 2717
[39] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992Rev. Mod. Phys. 64 1045
[40] Srivastava G P, Weaire D 1987Adv. Phys. 36 463
[41] Monkhorst H J, Pack J D 1976Phys. Rev. B 13 5188
[42] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[43] Hamann D R, Schlüter M, Chiang C 1979Phys. Rev. Lett. 43 1494
[44] Kong Q, Yang Y, Liu L, Bian Q, Lei B H, Li L, Pan S 2016J. Mater. Res. 31 488
[45] Yan S S 2011Fundamentals of solid-state physics (Beijing: Peking University Press) (in Chinese) [阎守胜2011固体物理基础北京: 北京大学出版社]
[46] Hiscocks J, Frisch M J 2009Gaussian 09: IOps Reference 9(USA: Gaussian)
[47] Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016J. Phys. Chem. C 120 4259
[48] Mulliken R S 1931Chem. Rev. 9 347
[49] Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024J. Synth. Cryst. 53 999(in Chinese)[张博,王云杰,齐亚杰,和志豪,丁家福,苏欣2024人工晶体学报53 999]
[50] Su X, Wang Y, Yang Z, Huang X C, Pan S, Li F, Lee M H 2013J. Phys. Chem. C 117 14149
[51] Tudi A, Han S, Yang Z, Pan S 2022Coord. Chem. Rev. 459 214380
[52] Wang X, Zhang B, Yang D, Wang, Y 2022Dalton Trans. 51 14059
[53] Bai S, Zhang X, Zhang B, Li L, Wang Y 2022Dalton Trans. 51 3421
[54] Chu Y, Wang H, Chen Q, Su X, Chen Z, Yang Z, Pan S 2024Adv. Funct. Mater. 34 2314933
[55] Ding Y, Zhu M, Wang J, Li B, Qi H, Liu L, Chu Y 2024Inorg. Chem. 63 20003
[56] Lin L, Jiang X, Wu C, Lin Z, Huang Z, Humphrey M G, Zhang C 2021Dalton Trans. 50 7238
[57] Lei B H, Yang Z, Pan S 2017Chem. Commun. 53 2818
[58] Su X, Chu Y, Yang Z, Lei B H, Cao C, Wang Y, Pan S 2020J. Phys. Chem. C 124 24949
[59] Bai S, Zhang X, Zhang B, Li L, Wang Y 2021Inorg. Chem. 60 10006
[60] Li S, Dou D, Chen C, Shi Q, Zhang B, Wang Y 2024Inorg. Chem. 63 24076
[61] Chu Y, Wang H, Abutukadi T, Li Z, Mutailipu M, Su X, Pan S 2023Small 19 2305074.
[62] Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012Phys. Rev. B Condens. Matter Mater. Phys. 85 014104
[63] Wang Y J, He Z H, Ding J F, Su X 2025J. Synth. Cryst. 54 85-94(in Chinese)[王云杰,和志豪,丁家福,苏欣2025人工晶体学报54 85]
[64] Ding J F, He Z H, Wang Y J, Su X 2025J. Synth. Cryst. 54 95-106(in Chinese)[丁家福,和志豪,王云杰,苏欣2025人工晶体学报54 95]
[65] . Chu D D, Yang Z H, Pan S L 2024. J. Synth. Cryst. 53 1475-1493(in Chinese) [储冬冬, 杨志华, 潘世烈2024人工晶体学报53 1475]
Metrics
- Abstract views: 53
- PDF Downloads: 1
- Cited By: 0