-
The gamma-ray total absorption facility (GTAF) composed of 40 BaF2 detection units is designed to measure the cross section data of neutron radiation capture reaction online, in order to comply with the experimental nuclear data sheet. Since 2019, several daunting experiment results have been analyzed and published, and we have found that one of the most important sources of experimental background is the initial α particles emitted by the BaF2 crystal, which is the core component of GTAF detection unit . Considering the current industrial manufacturing process capabilities, the impurities of Ra and its compounds cannot be completely removed from the BaF2. Developing data analysis algorithms to eliminate the influence of alpha particles in experimental data has become a key aspect. In this work, in order to meet the needs of data acquisition, online measurement and analysis of neutron radiation cross section, the GTAF data acquisition system adopts a full waveform acquisition method, which results in a large number of data recorded, transmitted, and stored during experiment, which also affects the uncertainty of the cross-section data. The number of data stored in the online experiment is about 118 MB/s, resulting in a long dead time. Based on the signal waveform characteristics of the BaF2 detection unit, in order to solve the aforementioned problems, three methods, namely the ratio of fast component to total component, pulse width, and time decay constant, are used to identify and distinguish α particles and γ rays. The quality factor FOM is utilized as an evaluation value and several experiments are conducted using three radioactive sources (22Na, 137C, 60Co) for verification. Due to the slow components of BaF2 light decay time being about 620 ns, the waveform pulse should essentially return to baseline at approximately 1900 ns to 2000 ns, allowing for the complete waveform of the γ rays signal to be captured at that moment, which may provide the best energy resolution. Therefore, in the online experiment, the integration length for the energy spectrum is chosen to be 2000 ns in this work. The quality factor is 1.19–1.41 from the fast total component ratio (fast component 5 ns, total component 200 ns) method, 0.94–1.04 from the pulse width (10% peak) method, and 0.93–1.07 from the time attenuation constant method. Through the quantitative analysis of quality factor and the comparison of energy spectrum, it is determined that the fast total component ratio method has the best effect and can effectively remove the background of α particles. The next step is to upgrade the online experimental data acquisition system to reduce the quantity of experimental data and the uncertainty of cross section data. The experimental data that need to be recorded should be the crossing threshold time (for the time-of-flight method) and the amplitude integration values of 5 ns after the threshold (for the fast component), 200 ns after the threshold (for the total component), and 2000 ns (for the energy) for each signal waveform, as well as the number of related detection units. The above information should be sufficient to complete online processing of experimental data, including the processing of the α particle background and (n,γ) reaction data. It is estimated that the data acquisition rate of the upgraded system will decrease from 118 MB/s to 24 MB/s, which can significantly reduce the dead time of the data acquisition system, thereby improving the accuracy of cross section data. -
表 1 不同粒子鉴别方法的品质因子比较
Table 1. Comparison of FOM of different particle identification methods.
放射源 快总成分比
(快成分5 ns/总成分200 ns)脉冲宽度
(10%峰值)/ns时间衰减常数/s–1 22Na 1.19 1.04 1.07 137Cs 1.30 0.94 0.93 60Co 1.41 1.01 0.96 -
[1] 丁大钊 2001 中国基础科学 1 13
Google Scholar
Ding D Z 2001 China Basic Sci. 1 13
Google Scholar
[2] Chandler D, Hartanto D, Bae J W, Burg K M, Robert Y, Sizemore C 2025 Ann. Nucl. Energy 211 110920
Google Scholar
[3] Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 p7
[4] Kompe D 1969 Nucl. Phys. 133 513
Google Scholar
[5] Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594
Google Scholar
[6] Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118
Google Scholar
[7] Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209
Google Scholar
[8] Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601
Google Scholar
[9] Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech. 54 1046
Google Scholar
[10] Kim H I, Paradela C, Sirakov I, Becker B, Capote R, Gunsing F, KimG N, Kopecky S, Lampoudis C, LeeY O, Massarczyk R, Moens A, Moxon M, PronyaevV G, Schillebeeckx P, Wynants R 2016 Eur. Phys. J. A 52 170
Google Scholar
[11] Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18
[12] Ren J, Ruan X C, Bao J, et al. 2019 Radiat. Detect. Tech. Methods 3 52
Google Scholar
[13] Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802
Google Scholar
[14] Endo S, Kimura A, Nakamura S, Iwamoto O, Iwamoto N, Rovira G, Terada K, Meigo S, Toh Y, Segawa M, Maeda M, Tsuneyama M 2022 J. Nucl. Sci. Techn. 59 318
Google Scholar
[15] Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J, Henderson R A, Wu C Y 2018 Nucl. Data Sheets 148 312
Google Scholar
[16] Laminack A, Blackmon J C, Couture A, Greene J P, Krticka M, Macon K T, Mosby S, Prokop C, Ullmann J L, Valenta S 2022 Phys. Rev. C 106 025802
Google Scholar
[17] Zhong Q P, Zhou Z Y, Tang H Q, Chen X L, He G Z, Zhang Q W, Guo W X, Yuan J L, Ma X Y, Wang Q, Ruan X C, Li Z H 2008 Chin. Phys. C 32 102
[18] 任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 110521
Google Scholar
Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 110521
Google Scholar
[19] 张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 70
Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Tech. 48 70
[20] 张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536
Google Scholar
Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Tech. 50 536
Google Scholar
[21] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华 2021 70 222801
Google Scholar
Zhang Q W, Luan G Y, Ren J, Ruan X C, He G Z, Bao J, Sun Q, Huang H X, Wang Z H, Gu M H, Yu T, Xie L K, Chen Y H, An Q, Bai H Y, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y K, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Han C C, Han Z J, He Y C, Hong Y, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang W, Jiang H Y, Jiang Z J, Jing H T, Kang L, Kang M T, Li B, Li C, Li J W, Li L, Li Q, Li X, Li Y, Liu R, Liu S B, Liu X Y, Mu Q L, Ning C J, Qi B B, Ren Z Z, Song Y P, Song Z H, Sun H, Sun K, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Q, Wang T F, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Yang Y W, Yi H, Yu L, Yu Y J, Zhang G H, Zhang L H, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y B, Zhou L P, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P, Zhu X H 2021 Acta Phys. Sin. 70 222801
Google Scholar
[22] 栾广源, 任杰, 张奇玮, 阮锡超, 贺国珠, 程品晶, 郭明伟 2022 同位素 35 273
Google Scholar
Luan G Y, Ren J, Zhang Q W, Ruan X C, He G Z, Cheng P J, Guo M W 2022 J. Isotopes 35 273
Google Scholar
[23] 石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆2018原子能科学技术52 1537
Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Tech. 52 1537
[24] 张奇玮, 贺国珠, 栾广源, 程品晶, 阮锡超, 朱兴华 2021 强激光与粒子束 33 0440
Google Scholar
Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser Part. Beams 33 0440
Google Scholar
[25] 王晓宇, 贺国珠, 张奇玮, 罗淏天, 徐阔之, 李倩, 解立坤, 栾广源, 阮锡超, 邹翀, 陈玄博, 吴鸿毅, 樊瑞睿, 蒋伟, 曹平, 余滔 2024 原子能科学技术 58 2262
Wang X Y, He G Z, Zhang Q W, Luo H T, Xu K Z, Li Q, Xie L K, Luan G Y, Ruan X C, Zou C, Chen X B, Wu H Y, Fan R R, Jiang W, Cao P, Yu T 2024 At. Energy Sci. Tech. 58 2262
[26] 罗淏天, 张奇玮, 栾广源, 王晓宇, 邹翀, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 吴鸿毅, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华 2024 73 072801
Google Scholar
Luo H T, Zhang Q W, Luan G Y, Wang X Y, Zou C, Ren J, Ruan X C, He G Z, Bao J, Sun Q, Huang H X, Wang Z H, Wu H Y, Gu M H, Yu T, Xie L K, Chen Y H, An Q, Bai H Y, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y K, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Han C C, Han Z J, He Y C, Hong Y, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang W, Jiang H Y, Jiang Z J, Jing H T, Kang L, Kang M T, Li B, Li C, Li J W, Li L, Li Q, Li X, Li Y, Liu R, Liu S B, Liu X Y, Mu Q L, Ning C J, Qi B B, Ren Z Z, Song Y P, Song Z H, Sun H, Sun K, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Q, Wang T F, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Yang Y W, Yi H, Yu L, Yu Y J, Zhang G H, Zhang L H, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y B, Zhou L P, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P, Zhu X H 2024 Acta Phys. Sin. 73 072801
Google Scholar
[27] 马霄云, 仲启平, 周祖英, 郭维新, 袁继龙, 王强, 张奇玮, 苏明, 阮锡超, 鲍杰, 黄翰雄, 蒋静, 聂阳波, 李霞, 刘刚, 兰长林 2009 原子能科学技术 43 180
Google Scholar
Ma X Y, Zhong Q P, Zhou Z Y, Guo W X, Yuan J L, Wang Q, Zhang Q W, Su M, Ruan X C, Bao J, Huang H X, Jiang J, Nie Y B, Li X, Liu G, Lan C L 2009 At. Energy Sci. Tech. 43 180
Google Scholar
[28] 张奇玮, 栾广源, 贺国珠, 程品晶, 阮锡超, 朱兴华 2020 原子核物理评论 37 771
Google Scholar
Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nucl. Phys. Rev. 37 771
Google Scholar
[29] 张奇玮, 栾广源, 郭明伟, 贺国珠, 阮锡超, 邹翀, 朱兴华 2021 现代应用物理 12 040401
Zhang Q W, Luan G Y, Guo M W, He G Z, Ruan X C, Zou C, Zhu X H 2021 Mod. Appl. Phys. 12 040401
[30] 彭猛, 贺国珠, 骆宏, 张奇玮, 石斌, 周祖英, 兰长林 2016 原子能科学技术 50 1866
Google Scholar
Peng M, He G Z, Luo H, Zhang Q W, Shi B, Zhou Z Y, Lan C L. 2016 At. Energy Sci. Tech. 50 1866
Google Scholar
Metrics
- Abstract views: 237
- PDF Downloads: 3
- Cited By: 0