Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α/γ discrimination method for bulky BaF2 detector used in γ total absorption facility

ZOU Chong ZHANG Qiwei LUAN Guangyuan WU Hongyi LUO Haotian CHEN Xuanbo WANG Xiaoyu HE Guozhu REN Jie HUANG Hanxiong RUAN Xichao BAO Jie ZHU Xinghua

Citation:

α/γ discrimination method for bulky BaF2 detector used in γ total absorption facility

ZOU Chong, ZHANG Qiwei, LUAN Guangyuan, WU Hongyi, LUO Haotian, CHEN Xuanbo, WANG Xiaoyu, HE Guozhu, REN Jie, HUANG Hanxiong, RUAN Xichao, BAO Jie, ZHU Xinghua
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The gamma-ray total absorption facility (GTAF) composed of 40 BaF2 detection units is designed to measure the cross section data of neutron radiation capture reaction online, in order to comply with the experimental nuclear data sheet. Since 2019, several daunting experiment results have been analyzed and published, and we have found that one of the most important sources of experimental background is the initial α particles emitted by the BaF2 crystal, which is the core component of GTAF detection unit .Considering the current industrial manufacturing process capabilities, the impurities of Ra and its compounds cannot be completely removed from the BaF2. Developing data analysis algorithms to eliminate the influence of alpha particles in experimental data has become a key aspect. In this work, in order to meet the needs of data acquisition, online measurement and analysis of neutron radiation cross section, the GTAF data acquisition system adopts a full waveform acquisition method, which results in a large number of data recorded, transmitted, and stored during experiment, which also affects the uncertainty of the cross-section data. The number of data stored in the online experiment is about 118 MB/s, resulting in a long dead time.Based on the signal waveform characteristics of the BaF2 detection unit, in order to solve the aforementioned problems, three methods, namely the ratio of fast component to total component, pulse width, and time decay constant, are used to identify and distinguish α particles and γ rays. The quality factor FOM is utilized as an evaluation value and several experiments are conducted using three radioactive sources (22Na, 137C, 60Co) for verification.Due to the slow components of BaF2 light decay time being about 620 ns, the waveform pulse should essentially return to baseline at approximately 1900 ns to 2000 ns, allowing for the complete waveform of the γ rays signal to be captured at that moment, which may provide the best energy resolution. Therefore, in the online experiment, the integration length for the energy spectrum is chosen to be 2000 ns in this work.The quality factor is 1.19–1.41 from the fast total component ratio (fast component 5 ns, total component 200 ns) method, 0.94–1.04 from the pulse width (10% peak) method, and 0.93–1.07 from the time attenuation constant method. Through the quantitative analysis of quality factor and the comparison of energy spectrum, it is determined that the fast total component ratio method has the best effect and can effectively remove the background of α particles.The next step is to upgrade the online experimental data acquisition system to reduce the quantity of experimental data and the uncertainty of cross section data. The experimental data that need to be recorded should be the crossing threshold time (for the time-of-flight method) and the amplitude integration values of 5 ns after the threshold (for the fast component), 200 ns after the threshold (for the total component), and 2000 ns (for the energy) for each signal waveform, as well as the number of related detection units. The above information should be sufficient to complete online processing of experimental data, including the processing of the α particle background and (n,γ) reaction data. It is estimated that the data acquisition rate of the upgraded system will decrease from 118 MB/s to 24 MB/s, which can significantly reduce the dead time of the data acquisition system, thereby improving the accuracy of cross section data.
  • 图 1  (a) BaF2探测单元; (b) GTAF

    Figure 1.  (a) BaF2 detector unit; (b) GTAF.

    图 2  BaF2探测单元的信号波形

    Figure 2.  Signal waveform of the BaF2 detection unit.

    图 3  BaF2探测单元的能谱

    Figure 3.  Energy spectrum of the BaF2 detection unit.

    图 4  不同积分长度能量分辨率的比较

    Figure 4.  Comparison of energy resolution of different integral length.

    图 5  品质因子计算分布图

    Figure 5.  Distribution of FOM calculation.

    图 6  波形的快成分与总成分

    Figure 6.  Fast and total components of waveform.

    图 7  不同快总成分比的品质因子 (a) 22Na; (b) 137Cs; (c) 60Co

    Figure 7.  FOM with different ratios of fast to total component: (a) 22Na; (b) 137Cs; (c) 60Co.

    图 8  能量与快总成分比的二维谱 (a) 22Na; (b) 137Cs; (c) 60Co

    Figure 8.  Energy versus ratio of fast to total component spectrum: (a) 22Na; (b) 137Cs; (c) 60Co.

    图 9  波形的脉冲宽度

    Figure 9.  Pulse width of waveform.

    图 10  不同波形脉冲宽度的品质因子

    Figure 10.  FOM with different pulse width of waveforms.

    图 11  能量与脉冲宽度的二维谱 (a) 22Na; (b) 137Cs; (c) 60Co

    Figure 11.  Energy versus pulse width spectrum: (a) 22Na; (b)137Cs; (c) 60Co.

    图 12  波形的时间衰减常数拟合

    Figure 12.  Fitting of the time decay constant of waveform.

    图 13  能量与时间衰减常数的二维谱 (a) 22Na; (b) 137Cs; (c) 60Co

    Figure 13.  Energy versus time decay constant spectrum: (a) 22Na; (b) 137Cs; (c) 60Co.

    图 14  不同粒子鉴别方法处理后得能谱比较 (a) 22Na; (b) 137Cs; (c) 60Co

    Figure 14.  Comparison of energy spectra obtained by different particle identification methods: (a) 22Na; (b) 137Cs; (c) 60Co.

    表 1  不同粒子鉴别方法的品质因子比较

    Table 1.  Comparison of FOM of different particle identification methods.

    放射源快总成分比
    (快成分5 ns/总成分200 ns)
    脉冲宽度
    (10%峰值)/ns
    时间衰减常数/s–1
    22Na1.191.041.07
    137Cs1.300.940.93
    60Co1.411.010.96
    DownLoad: CSV
    Baidu
  • [1]

    丁大钊 2001 中国基础科学 1 13Google Scholar

    Ding D Z 2001 China Basic Sci. 1 13Google Scholar

    [2]

    Chandler D, Hartanto D, Bae J W, Burg K M, Robert Y, Sizemore C 2025 Ann. Nucl. Energy 211 110920Google Scholar

    [3]

    Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 p7

    [4]

    Kompe D 1969 Nucl. Phys. 133 513Google Scholar

    [5]

    Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar

    [6]

    Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118Google Scholar

    [7]

    Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar

    [8]

    Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar

    [9]

    Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech. 54 1046Google Scholar

    [10]

    Kim H I, Paradela C, Sirakov I, Becker B, Capote R, Gunsing F, KimG N, Kopecky S, Lampoudis C, LeeY O, Massarczyk R, Moens A, Moxon M, PronyaevV G, Schillebeeckx P, Wynants R 2016 Eur. Phys. J. A 52 170Google Scholar

    [11]

    Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18

    [12]

    Ren J, Ruan X C, Bao J, et al. 2019 Radiat. Detect. Tech. Methods 3 52Google Scholar

    [13]

    Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar

    [14]

    Endo S, Kimura A, Nakamura S, Iwamoto O, Iwamoto N, Rovira G, Terada K, Meigo S, Toh Y, Segawa M, Maeda M, Tsuneyama M 2022 J. Nucl. Sci. Techn. 59 318Google Scholar

    [15]

    Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J, Henderson R A, Wu C Y 2018 Nucl. Data Sheets 148 312Google Scholar

    [16]

    Laminack A, Blackmon J C, Couture A, Greene J P, Krticka M, Macon K T, Mosby S, Prokop C, Ullmann J L, Valenta S 2022 Phys. Rev. C 106 025802Google Scholar

    [17]

    Zhong Q P, Zhou Z Y, Tang H Q, Chen X L, He G Z, Zhang Q W, Guo W X, Yuan J L, Ma X Y, Wang Q, Ruan X C, Li Z H 2008 Chin. Phys. C 32 102

    [18]

    任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 110521Google Scholar

    Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 110521Google Scholar

    [19]

    张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 70

    Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Tech. 48 70

    [20]

    张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar

    Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Tech. 50 536Google Scholar

    [21]

    张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华 2021 70 222801Google Scholar

    Zhang Q W, Luan G Y, Ren J, Ruan X C, He G Z, Bao J, Sun Q, Huang H X, Wang Z H, Gu M H, Yu T, Xie L K, Chen Y H, An Q, Bai H Y, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y K, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Han C C, Han Z J, He Y C, Hong Y, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang W, Jiang H Y, Jiang Z J, Jing H T, Kang L, Kang M T, Li B, Li C, Li J W, Li L, Li Q, Li X, Li Y, Liu R, Liu S B, Liu X Y, Mu Q L, Ning C J, Qi B B, Ren Z Z, Song Y P, Song Z H, Sun H, Sun K, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Q, Wang T F, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Yang Y W, Yi H, Yu L, Yu Y J, Zhang G H, Zhang L H, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y B, Zhou L P, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P, Zhu X H 2021 Acta Phys. Sin. 70 222801Google Scholar

    [22]

    栾广源, 任杰, 张奇玮, 阮锡超, 贺国珠, 程品晶, 郭明伟 2022 同位素 35 273Google Scholar

    Luan G Y, Ren J, Zhang Q W, Ruan X C, He G Z, Cheng P J, Guo M W 2022 J. Isotopes 35 273Google Scholar

    [23]

    石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆2018原子能科学技术52 1537

    Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Tech. 52 1537

    [24]

    张奇玮, 贺国珠, 栾广源, 程品晶, 阮锡超, 朱兴华 2021 强激光与粒子束 33 0440Google Scholar

    Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser Part. Beams 33 0440Google Scholar

    [25]

    王晓宇, 贺国珠, 张奇玮, 罗淏天, 徐阔之, 李倩, 解立坤, 栾广源, 阮锡超, 邹翀, 陈玄博, 吴鸿毅, 樊瑞睿, 蒋伟, 曹平, 余滔 2024 原子能科学技术 58 2262

    Wang X Y, He G Z, Zhang Q W, Luo H T, Xu K Z, Li Q, Xie L K, Luan G Y, Ruan X C, Zou C, Chen X B, Wu H Y, Fan R R, Jiang W, Cao P, Yu T 2024 At. Energy Sci. Tech. 58 2262

    [26]

    罗淏天, 张奇玮, 栾广源, 王晓宇, 邹翀, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 吴鸿毅, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华 2024 73 072801Google Scholar

    Luo H T, Zhang Q W, Luan G Y, Wang X Y, Zou C, Ren J, Ruan X C, He G Z, Bao J, Sun Q, Huang H X, Wang Z H, Wu H Y, Gu M H, Yu T, Xie L K, Chen Y H, An Q, Bai H Y, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y K, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Han C C, Han Z J, He Y C, Hong Y, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang W, Jiang H Y, Jiang Z J, Jing H T, Kang L, Kang M T, Li B, Li C, Li J W, Li L, Li Q, Li X, Li Y, Liu R, Liu S B, Liu X Y, Mu Q L, Ning C J, Qi B B, Ren Z Z, Song Y P, Song Z H, Sun H, Sun K, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Q, Wang T F, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Yang Y W, Yi H, Yu L, Yu Y J, Zhang G H, Zhang L H, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y B, Zhou L P, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P, Zhu X H 2024 Acta Phys. Sin. 73 072801Google Scholar

    [27]

    马霄云, 仲启平, 周祖英, 郭维新, 袁继龙, 王强, 张奇玮, 苏明, 阮锡超, 鲍杰, 黄翰雄, 蒋静, 聂阳波, 李霞, 刘刚, 兰长林 2009 原子能科学技术 43 180Google Scholar

    Ma X Y, Zhong Q P, Zhou Z Y, Guo W X, Yuan J L, Wang Q, Zhang Q W, Su M, Ruan X C, Bao J, Huang H X, Jiang J, Nie Y B, Li X, Liu G, Lan C L 2009 At. Energy Sci. Tech. 43 180Google Scholar

    [28]

    张奇玮, 栾广源, 贺国珠, 程品晶, 阮锡超, 朱兴华 2020 原子核物理评论 37 771Google Scholar

    Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nucl. Phys. Rev. 37 771Google Scholar

    [29]

    张奇玮, 栾广源, 郭明伟, 贺国珠, 阮锡超, 邹翀, 朱兴华 2021 现代应用物理 12 040401

    Zhang Q W, Luan G Y, Guo M W, He G Z, Ruan X C, Zou C, Zhu X H 2021 Mod. Appl. Phys. 12 040401

    [30]

    彭猛, 贺国珠, 骆宏, 张奇玮, 石斌, 周祖英, 兰长林 2016 原子能科学技术 50 1866Google Scholar

    Peng M, He G Z, Luo H, Zhang Q W, Shi B, Zhou Z Y, Lan C L. 2016 At. Energy Sci. Tech. 50 1866Google Scholar

  • [1] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, doi: 10.7498/aps.71.20220629
    [2] Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong. Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector. Acta Physica Sinica, doi: 10.7498/aps.70.20201954
    [3] Meng Meng, Qi Qiang, He Chong-Jun, Ding Dong-Zhou, Zhao Shu-Wen, Shi Jun-Jie, Ren Guo-Hao. Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals. Acta Physica Sinica, doi: 10.7498/aps.70.20201697
    [4] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, doi: 10.7498/aps.67.20180689
    [5] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, doi: 10.7498/aps.66.090704
    [6] Zhang Cun-Bo, Yan Tao, Yang Zhi-Qiang, Ren Wei-Tao, Zhu Zhan-Ping. heoretical model of influence of frequency on thermal breakdown in semiconductor device. Acta Physica Sinica, doi: 10.7498/aps.66.018501
    [7] Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li. Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods. Acta Physica Sinica, doi: 10.7498/aps.65.204205
    [8] Sun Hua-Juan, Yan Xiao-Hong, Hao Xue-Yuan. A method of adaptive pulse width modulation for multiple-valued data transmission. Acta Physica Sinica, doi: 10.7498/aps.64.018402
    [9] Hao Xiang, Xie Rui-Liang, Yang Xu, Liu Tao, Huang Lang. Bifurcation and chaos in sliding mode controlled first-order h-bridge inverter based on pulse width modulation. Acta Physica Sinica, doi: 10.7498/aps.62.200503
    [10] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, doi: 10.7498/aps.62.114101
    [11] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, doi: 10.7498/aps.62.122901
    [12] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, doi: 10.7498/aps.61.024101
    [13] Fan Rui-Rui, Hou Feng-Jie, Ouyang Qun, Fan Sheng-Nan, Chen Yuan-Bo, Yi Fu-Ting. The study of micro-bulk micromegas. Acta Physica Sinica, doi: 10.7498/aps.61.092901
    [14] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, doi: 10.7498/aps.58.8249
    [15] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, doi: 10.7498/aps.57.4099
    [16] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, doi: 10.7498/aps.57.2141
    [17] Liu Shi-Jie, Ma Jian-Yong, Shen Zi-Cai, Kong Wei-Jin, Shen Jian, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Performance of multilayer dielectric grating irradiated by ultrashort optical pulse. Acta Physica Sinica, doi: 10.7498/aps.56.4542
    [18] Chen Shu-Qi, Liu Zhi-Bo, Zhou Wen-Yuan, Tian Jian-Guo Zang Wei-Ping, Zang Wei-Ping, Song Feng, Zhang Chun-Ping. The influence of pulse width on transient thermally induced optical nonlinearities in a Kerr nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.53.3577
    [19] LI CHEN-XI, LU KUN-QUAN, ZHAO YA-QIN. INFLUENCE OF ENERGY RESOLUTION ON EXAFS. Acta Physica Sinica, doi: 10.7498/aps.36.1496
    [20] LIN JIN-GU, LIU CHENG-HUI, ZHU ZHEN-HE, LAI RUI-SHENG, HUO CHONG-RU. PULSE WIDTH MEASUREMENT OF THE PASSIVELY MODE-LOCKED Nd:YAG LASER BY NONCOLLINEAR SHG METHOD. Acta Physica Sinica, doi: 10.7498/aps.29.406
Metrics
  • Abstract views:  237
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2025
  • Accepted Date:  21 March 2025
  • Available Online:  01 April 2025

/

返回文章
返回
Baidu
map