Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on α/γ Discriminate Method of Bulk BaF2 Detector for Gamma Total Absorption Facility

Zou Chong Zhang Qiwei Luan Guangyuan Wu Hongyi Luo Haotian Chen Xuanbo Wang Xiaoyu He Guozhu Ren Jie Huang Hanxiong Ruan Xichao Bao Jie Zhu Xinghua

Research on α/γ Discriminate Method of Bulk BaF2 Detector for Gamma Total Absorption Facility

Zou Chong, Zhang Qiwei, Luan Guangyuan, Wu Hongyi, Luo Haotian, Chen Xuanbo, Wang Xiaoyu, He Guozhu, Ren Jie, Huang Hanxiong, Ruan Xichao, Bao Jie, Zhu Xinghua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The Gamma-ray Total Absorption Facility (GTAF), which is composed of 40 BaF2 detection units, is designed to measure the cross section data of neutron radiation capture reaction online, in order to comply the experimental nuclear data sheet. Since 2019, several formidable experiment results have been analyzed and published where we consumed that one of the most important sources of experimental background is initial α particles emitted from the BaF2 crystal, the core component of the detection unit in GTAF, itself.
    The development of data analysis algorithms to eliminate the influence of alpha particles in experimental data has become a key aspect, considering the current industrial manufacturing process capabilities, impurities Ra, and its compound, cannot be completely removed from the BaF2. In this paper, to fulfill the need of data collect, online measurement and analysis of neutron radiation cross section, the data acquisition system of GTAF adopts the method of full waveform acquisition, resulting in a substantial amount of data recorded, transmitted, and stored during experiment, which also affects the uncertainty of the cross-section data. The amount of data stored in the online experiment is about 118 MB/s, resulting in a large dead time.
    Based on the signal waveform characteristics of the BaF2 detection unit, to address the aforementioned issues, three methods, namely the ratio of fast to total component, pulse width, and time decay constant, are employed to identify and discriminate α particles and γ rays, with the quality factor FOM utilized as an evaluation value and several experiments using three radioactive sources (22Na, 137C, 60Co) used to verify.
    Due to the slow components of BaF2 light decay time being about 620 ns, the waveform pulse should essentially return to baseline at approximately 1900 ns to 2000 ns, allowing for the complete waveform of the γ rays signal to be captured at that moment, which might provide the best energy resolution. Therefore, in the online experiment, the integration length for the energy spectrum is chosen to be 2000 ns in this paper.
    The quality factors of fast total component ratio (fast component 5 ns, total component 200 ns) method are 1.19~1.41, pulse width (10% peak) method are 0.94~1.04, and time attenuation constant method are 0.93~1.07. Through the quantitative analysis of quality factor and the comparison of energy spectrum, it is determined that the fast total component ratio method has the best effect, which can effectively remove the background of α particles.
    The next step is to upgrade the online experimental data acquisition system to reduce the amount of experimental data and the uncertainty of cross section data. The experiment data need to be recorded should be the crossing threshold time for each signal waveform (for the time-of-flight method) and the amplitude integration value of 5 ns after the threshold (for the fast component), of 200 ns after the threshold (for the total component) and of 2000 ns (for the energy), as well as the related detection unit number. These mentioned information should be sufficient to complete the online experimental data online processing, including processing the α particle background and (n,γ) reactions data. It is estimated that the data acquisition rate of the upgraded system will decrease from 118 MB/s to 24 MB/s, which can significantly reduce the dead time of the data acquisition system and thereby improve the accuracy of cross section data.
      PACS:
  • [1]

    Ding D Z 2001 China Basic Science 1 13(in Chinese) [丁大钊 2001 中国基础科学1 13]

    [2]

    Chandler D, Hartanto D, Bae J W, Burg K M, Robert Y, Sizemore C 2025 Annals of Nuclear Energy211 110920

    [3]

    Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22-27, 2007 7

    [4]

    Kompe D 1969 Nucl. Phys.133 513

    [5]

    Wisshak K, Kappeler F, Reffo G 1984 Nucl.Sci.Eng.88 594

    [6]

    Terada K,KatabuchiT, Mizumoto M, Arai T,Saito T, Igashira M,Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Progress in Nuclear Energy82 118

    [7]

    Kobayashi K, Lee S, Yamamoto S 2004 Nucl.Sci.Eng.146 209

    [8]

    Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A. 2010 Phys. Rev. C82 057601

    [9]

    Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech.54 1046

    [10]

    Kim H I, Paradela C, Sirakov I, Becker B, Capote R, Gunsing F, KimG N, Kopecky S, Lampoudis C, LeeY O, Massarczyk R, Moens A, Moxon M, PronyaevV G, Schillebeeckx P, Wynants R 2016 Eur. Phys. J. A52 170

    [11]

    Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18

    [12]

    Ren J, Ruan X C, Bao J, Luan G Y, Jiang W, An Q, Bai H Y, Cao P, Chen Q P, Chen Y H, Cheng P J, Cui Z Q, Fan R R, Feng C Q, Gu M H, Guo F Q, Han C C, Han Z J, He G Z, He Y C, He Y F, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jing H T, Kang L, Kang M T, Li B, Li L, Li Q, Li X, Li Y, Li Y, Liu R, Liu S B, Liu X Y, Ma Y L, Ning C J, Qi B B, Song Z H, Sun H, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Wang P C, Wang Q, Wang T F, Wang Y F, Wang Z H, Wang Z, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Xie L K, Yang Y W, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang J, Zhang L H, Zhang L Y, Zhang Q M, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y T, Zhou L, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2019 Radiation Detection Technology and Methods3 52

    [13]

    Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C73 015802

    [14]

    Endo S, Kimura A, Nakamura S, Iwamoto O, Iwamoto N, Rovira G, Terada K, Meigo S, Toh Y, Segawa M, Maeda M, Tsuneyama M 2022 Journal of Nuclear Science and Technology59 318

    [15]

    Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J, Henderson R A, Wu C Y 2018 Nuclear Data Sheets 148 312

    [16]

    Laminack A, Blackmon J.C, Couture A, Greene J P, Krticka M, Macon K T, Mosby S, Prokop C, Ullmann J L, Valenta S 2022 Phys. Rev. C106 025802

    [17]

    Zhong Q P, Zhou Z Y, Tang H Q, Chen X L, He G Z, Zhang Q W, Guo W X, Yuan J L, Ma X Y, Wang Q, Ruan X C, Li Z H 2008 Chin. Phys. C 32 102

    [18]

    Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech.37 110521 (in Chinese) [任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术37 110521]

    [19]

    Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 Atomic Energy Science and Technology48 70 (in Chinese) [张奇玮,贺国珠,黄兴,阮锡超,李志宏,朱兴华2014 原子能科学技术48 70]

    [20]

    Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 Atomic Energy Science and Technology50 536 (in Chinese) [张奇玮,贺国珠,黄兴,程品晶,阮锡超,朱兴华2016 原子能科学技术50 536]

    [21]

    Zhang QW, Luan GY, Ren J, Ruan XC, He GZ, Bao J, Sun Q, Huang HX, Wang ZH, Gu MH, Yu T, Xie LK, Chen YH, An Q, Bai HY, Bao Y, Cao P, Chen HL, Chen QP, Chen YK, Chen Z, Cui ZQ, Fan RR, Feng CQ, Gao KQ, Han CC, Han ZJ, He YC, Hong Y, Huang WL, Huang XR, Ji XL, Ji XY, Jiang W, Jiang HY, Jiang ZJ, Jing HT, Kang L, Kang MT, Li B, Li C, Li JW, Li L, Li Q, Li X, Li Y, Liu R, Liu SB, Liu XY, Mu QL, Ning CJ, Qi BB, Ren ZZ, Song YP, Song ZH, Sun H, Sun K, Sun XY, Sun ZJ, Tan ZX, Tang HQ, Tang JY, Tang XY, Tian BB, Wang LJ, Wang PC, Wang Q, Wang TF, Wen J, Wen ZW, Wu QB, Wu XG, Wu X, Yang YW, Yi H, Yu L, Yu YJ, Zhang GH, Zhang LH, Zhang XP, Zhang YL, Zhang ZY, Zhao YB, Zhou LP, Zhou ZY, Zhu DY, Zhu KJ, Zhu P, Zhu XH. 2021 Acta Phys. Sin. 70 222801 (in Chinese) [张奇玮,栾广源,任杰,阮锡超,贺国珠,鲍杰,孙琪,黄翰雄,王朝辉,顾旻皓,余滔,解立坤,陈永浩,安琪,白怀勇,鲍煜,曹平,陈昊磊,陈琪萍,陈裕凯,陈朕,崔增琪,樊瑞睿,封常青,高可庆,韩长材,韩子杰,何泳成,洪杨,黄蔚玲,黄锡汝,季筱璐,吉旭阳,蒋伟,江浩雨,姜智杰,敬罕涛,康玲,康明涛,李波,李超,李嘉雯,李论,李强,李晓,李样,刘荣,刘树彬,刘星言,穆奇丽,宁常军,齐斌斌,任智洲,宋英鹏,宋朝晖,孙虹,孙康,孙晓阳,孙志嘉,谭志新,唐洪庆,唐靖宇,唐新懿,田斌斌,王丽娇,王鹏程,王琦,王涛峰,文杰,温中伟,吴青彪,吴晓光,吴煊,羊奕伟,易晗,于莉,于永积,张国辉,张林浩,张显鹏,张玉亮,张志永,赵豫斌,周路平,周祖英,朱丹阳,朱科军,朱鹏,朱兴华 2021 70 222801]

    [22]

    Luan G Y, Ren J, Zhang Q W, Ruan X C, He G Z, Cheng P J, Guo M W 2022 Journal of Isotopes 35 273 (in Chinese) [栾广源,任杰,张奇玮,阮锡超,贺国珠,程品晶,郭明伟 2022同位素35 273]

    [23]

    Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 Atomic Energy Science and Technology52 1537 (in Chinese) [石斌,彭猛,张奇玮,贺国珠,周祖英,唐洪庆2018原子能科学技术52 1537]

    [24]

    Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser and Particle Beams33 0440 (in Chinese) [张奇玮,贺国珠,栾广源,程品晶,阮锡超,朱兴华2021 强激光与粒子束33 0440]

    [25]

    Wang X Y, He G Z, Zhang Q W, Luo H T, Xu K Z, Li Q, Xie L K, Luan G Y, Ruan X C, Zou C, Chen X B, Wu H Y, Fan R R, Jiang W, Cao P, Yu T. 2024 Atomic Energy Science and Technology58 2262 (in Chinese) [王晓宇,贺国珠,张奇玮,罗淏天,徐阔之,李倩,解立坤,栾广源,阮锡超,邹翀,陈玄博,吴鸿毅,樊瑞睿,蒋伟,曹平,余滔2024原子能科学技术58 2262]

    [26]

    Luo HT, Zhang QW, Luan GY, Wang XY, Zou C, Ren J, Ruan XC, He GZ, Bao J, Sun Q, Huang HX, Wang ZH, Wu HY, Gu MH, Yu T, Xie LK, Chen YH, An Q, Bai HY, Bao Y, Cao P, Chen HL, Chen QP, Chen YK, Chen Z, Cui ZQ, Fan RR, Feng CQ, Gao KQ, Han CC, Han ZJ, He YC, Hong Y, Huang WL, Huang XR, Ji XL, Ji XY, Jiang W, Jiang HY, Jiang ZJ, Jing HT, Kang L, Kang MT, Li B, Li C, Li JW, Li L, Li Q, Li X, Li Y, Liu R, Liu SB, Liu XY, Mu QL, Ning CJ, Qi BB, Ren ZZ, Song YP, Song ZH, Sun H, Sun K, Sun XY, Sun ZJ, Tan ZX, Tang HQ, Tang JY, Tang XY, Tian BB, Wang LJ, Wang PC, Wang Q, Wang TF, Wen J, Wen ZW, Wu QB, Wu XG, Wu X, Yang YW, Yi H, Yu L, Yu YJ, Zhang GH, Zhang LH, Zhang XP, Zhang YL, Zhang ZY, Zhao YB, Zhou LP, Zhou ZY, Zhu DY, Zhu KJ, Zhu P, Zhu XH. Acta Phys. Sin. 73 072801 (in Chinese) [罗淏天,张奇玮,栾广源,王晓宇,邹翀,任杰,阮锡超,贺国珠,鲍杰,孙琪,黄翰雄,王朝辉,吴鸿毅,顾旻皓,余滔,解立坤,陈永浩,安琪,白怀勇,鲍煜,曹平,陈昊磊,陈琪萍,陈裕凯,陈朕,崔增琪,樊瑞睿,封常青,高可庆,韩长材,韩子杰,何泳成,洪杨,黄蔚玲,黄锡汝,季筱璐,吉旭阳,蒋伟,江浩雨,姜智杰,敬罕涛,康玲,康明涛,李波,李超,李嘉雯,李论,李强,李晓,李样,刘荣,刘树彬,刘星言,穆奇丽,宁常军,齐斌斌,任智洲,宋英鹏,宋朝晖,孙虹,孙康,孙晓阳,孙志嘉,谭志新,唐洪庆,唐靖宇,唐新懿,田斌斌,王丽娇,王鹏程,王琦,王涛峰,文杰,温中伟,吴青彪,吴晓光,吴煊,羊奕伟,易晗,于莉,于永积,张国辉,张林浩,张显鹏,张玉亮,张志永,赵豫斌,周路平,周祖英,朱丹阳,朱科军,朱鹏,朱兴华2024 73 072801]

    [27]

    Ma X Y, Zhong Q P, Zhou Z Y, Guo W X, Yuan J L, Wang Q, Zhang Q W, Su M, Ruan X C, Bao J, Huang H X, Jiang J, Nie Y B, Li X, Liu G, Lan C L. 2009 Atomic Energy Science and Technology43 180 (in Chinese) [马霄云,仲启平,周祖英,郭维新,袁继龙,王强,张奇玮,苏明,阮锡超,鲍杰,黄翰雄,蒋静,聂阳波,李霞,刘刚,兰长林2009 原子能科学技术43 180]

    [28]

    Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nuclear Physics Review37 771 (in Chinese) [张奇玮,栾广源,贺国珠,程品晶,阮锡超,朱兴华2020 原子核物理评论37 771]

    [29]

    Zhang Q W, Luan G Y, Guo M W, He G Z, Ruan X C, Zou C, Zhu X H. 2021 Modern Applied Physics 12 040401 (in Chinese) [张奇玮,栾广源,郭明伟,贺国珠,阮锡超,邹翀,朱兴华2021现代应用物理12 040401]

    [30]

    Peng M, He G Z, Luo H, Zhang Q W, Shi B, Zhou Z Y, Lan C L. 2016 Atomic Energy Science and Technology50 1866 (in Chinese) [彭猛,贺国珠,骆宏,张奇玮,石斌,周祖英,兰长林 2016 原子能科学技术50 1866]

  • [1] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, doi: 10.7498/aps.71.20220629
    [2] Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong. Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector. Acta Physica Sinica, doi: 10.7498/aps.70.20201954
    [3] Meng Meng, Qi Qiang, He Chong-Jun, Ding Dong-Zhou, Zhao Shu-Wen, Shi Jun-Jie, Ren Guo-Hao. Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals. Acta Physica Sinica, doi: 10.7498/aps.70.20201697
    [4] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, doi: 10.7498/aps.67.20180689
    [5] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, doi: 10.7498/aps.66.090704
    [6] Zhang Cun-Bo, Yan Tao, Yang Zhi-Qiang, Ren Wei-Tao, Zhu Zhan-Ping. heoretical model of influence of frequency on thermal breakdown in semiconductor device. Acta Physica Sinica, doi: 10.7498/aps.66.018501
    [7] Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li. Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods. Acta Physica Sinica, doi: 10.7498/aps.65.204205
    [8] Sun Hua-Juan, Yan Xiao-Hong, Hao Xue-Yuan. A method of adaptive pulse width modulation for multiple-valued data transmission. Acta Physica Sinica, doi: 10.7498/aps.64.018402
    [9] Hao Xiang, Xie Rui-Liang, Yang Xu, Liu Tao, Huang Lang. Bifurcation and chaos in sliding mode controlled first-order h-bridge inverter based on pulse width modulation. Acta Physica Sinica, doi: 10.7498/aps.62.200503
    [10] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, doi: 10.7498/aps.62.114101
    [11] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, doi: 10.7498/aps.62.122901
    [12] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, doi: 10.7498/aps.61.024101
    [13] Fan Rui-Rui, Hou Feng-Jie, Ouyang Qun, Fan Sheng-Nan, Chen Yuan-Bo, Yi Fu-Ting. The study of micro-bulk micromegas. Acta Physica Sinica, doi: 10.7498/aps.61.092901
    [14] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, doi: 10.7498/aps.58.8249
    [15] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, doi: 10.7498/aps.57.4099
    [16] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, doi: 10.7498/aps.57.2141
    [17] Liu Shi-Jie, Ma Jian-Yong, Shen Zi-Cai, Kong Wei-Jin, Shen Jian, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Performance of multilayer dielectric grating irradiated by ultrashort optical pulse. Acta Physica Sinica, doi: 10.7498/aps.56.4542
    [18] Chen Shu-Qi, Liu Zhi-Bo, Zhou Wen-Yuan, Tian Jian-Guo Zang Wei-Ping, Zang Wei-Ping, Song Feng, Zhang Chun-Ping. The influence of pulse width on transient thermally induced optical nonlinearities in a Kerr nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.53.3577
    [19] LI CHEN-XI, LU KUN-QUAN, ZHAO YA-QIN. INFLUENCE OF ENERGY RESOLUTION ON EXAFS. Acta Physica Sinica, doi: 10.7498/aps.36.1496
    [20] LIN JIN-GU, LIU CHENG-HUI, ZHU ZHEN-HE, LAI RUI-SHENG, HUO CHONG-RU. PULSE WIDTH MEASUREMENT OF THE PASSIVELY MODE-LOCKED Nd:YAG LASER BY NONCOLLINEAR SHG METHOD. Acta Physica Sinica, doi: 10.7498/aps.29.406
Metrics
  • Abstract views:  88
  • PDF Downloads:  0
Publishing process
  • Available Online:  01 April 2025

/

返回文章
返回
Baidu
map