Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pine-shaped AlN:Er3+ nanostructure: A multifunctional material with both luminescent and magnetic properties

DING Xin TIAN Zifeng WANG Qiushi LIU Cailong CUI Hang

Citation:

Pine-shaped AlN:Er3+ nanostructure: A multifunctional material with both luminescent and magnetic properties

DING Xin, TIAN Zifeng, WANG Qiushi, LIU Cailong, CUI Hang
cstr: 32037.14.aps.74.20241587
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures are synthesized, through a direct reaction between aluminum (Al) and erbium oxide (Er2O3) mixed powders in a nitrogen (N2) atmosphere, by using a direct current arc discharge plasma method. X-ray diffraction (XRD) analysis reveals that the diffraction peaks of AlN:Er3+ shift towards lower angles for the doped sample compared with those of undoped AlN, indicating lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirms that Al, N, and Er are coexistent, while energy-dispersive X-ray spectroscopy (EDS) quantitatively shows that the atomic ratio for Al:N:Er is about 46.9∶52.8∶0.3. The nanostructures, resembling pine trees, are measured to be 5–10 μm in height and 1–3 μm in width, with branch nanowires extending 500 nm–1 μm in length and 50–100 nm in diameter. These branches, radiating at about 60° from the main trunk, are found to grow along the [100] direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacing of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identify distinct emission peaks in the visible region (527, 548, and 679 nm) and near-infrared region (801, 871, and 977 nm), which is attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm is measured to be 9.63 μs, slightly shorter than those of other Er3+-doped materials. The nanostructures demonstrate that the superior temperature sensing capability possesses a maximum relative sensitivity of 1.9×10–2 K–1 at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization reveals that the room-temperature ferromagnetism has a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, which shows the potential for room-temperature spintronic applications. First-principle calculations attribute the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings highlight the potential of AlN:Er3+ pine-shaped nanostructures in various applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.
      Corresponding author: WANG Qiushi, wang_jiu_jiu@foxmail.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406200) and the National Natural Science Foundation of China (Grant No. 11874174).
    [1]

    李志杰, 田鸣, 贺连龙 2011 60 098101Google Scholar

    Li Z J, Tian M, He L L 2011 Acta Phys. Sin. 60 098101Google Scholar

    [2]

    蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉 2013 62 217504Google Scholar

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013 Acta Phys. Sin. 62 217504Google Scholar

    [3]

    程赛, 吕惠民, 石振海, 崔静雅 2012 61 126201Google Scholar

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012 Acta Phys. Sin. 61 126201Google Scholar

    [4]

    余森, 许晟瑞, 陶鸿昌, 王海涛, 安瑕, 杨赫, 许钪, 张进成, 郝跃 2024 73 196101Google Scholar

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024 Acta Phys. Sin. 73 196101Google Scholar

    [5]

    赵罡, 梁汉普, 段益峰 2023 72 096301Google Scholar

    Zhao G, Liang H P, Duan Y F 2023 Acta Phys. Sin. 72 096301Google Scholar

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024 Chin. Phys. B 33 106801Google Scholar

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007 J. Appl. Phys. 101 113918Google Scholar

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 89 192111Google Scholar

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021 Optik 243 167455Google Scholar

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019 Chin. Opt. Lett. 17 111602Google Scholar

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022 Opt. Mater. 128 112366Google Scholar

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021 J. Lumin. 236 118082Google Scholar

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023 Appl. Phys. Lett. 122 091106Google Scholar

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025 J. Phys. Chem. Solids 197 112442Google Scholar

    [15]

    Rougab M, Gueddouh A 2021 Appl. Phys. A 127 969Google Scholar

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022 Phys. Rev. Mater. 6 094603Google Scholar

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023 J. Lumin. 255 119605Google Scholar

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996 Appl. Phys. Lett. 69 2083Google Scholar

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997 J. Lumin. 72-74 284Google Scholar

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992Google Scholar

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999 Appl. Phys. Lett. 74 3008Google Scholar

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000 Surf. Coat. Tech. 132 99Google Scholar

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003 Opt. Mater. 24 321Google Scholar

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001 Appl. Surf. Sci. 175-176 480Google Scholar

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005 J. Appl. Phys. 98 093514Google Scholar

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012 J. Lumin. 132 2367Google Scholar

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014 Appl. Surf. Sci. 307 189Google Scholar

    [28]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5236Google Scholar

    [29]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5361Google Scholar

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016 J. Lumin. 171 42Google Scholar

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017 J. Alloys Compd. 727 735Google Scholar

    [32]

    Hu X W, Tai Z W, Yang C T 2018 Mater. Lett. 217 281Google Scholar

    [33]

    Ge S W, Zhang B Z, Yang C T 2019 Surf. Coat. Tech. 358 404Google Scholar

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009 Appl. Phys. Lett. 95 162501Google Scholar

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022 J. Alloys Compd. 907 164461Google Scholar

    [37]

    Narang V, Korakakis D, Seehra M S 2014 J. Appl. Phys. 116 213911Google Scholar

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019 J. Lumin. 206 33Google Scholar

    [39]

    类伟巍 2009 博士学位论文 (长春: 吉林大学)

    Lei W W 2009 Ph. D. Dissertation (Changchun: Jilin University

    [40]

    Xu Y S, Yao B B, Cui Q L 2016 RSC Adv. 6 113204Google Scholar

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008 J. Nanosci. Nanotechno. 8 237Google Scholar

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010 Crystengcomm 12 511Google Scholar

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008 J. Phys. Chem. C 112 13353Google Scholar

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019 J. Alloys Compd. 775 498Google Scholar

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014 Opt. Mater. 36 1378Google Scholar

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015 J. Mater. Sci-Mater. EI 26 6502Google Scholar

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006 J. Phys. Chem. B 110 21593Google Scholar

    [48]

    Kumari S, Rao A S, Sinha R K 2024 ChemPhotoChem 8 e202300226Google Scholar

    [49]

    陈宝玖, 吕少哲, 黄世华 2001 无机材料学报 16 223

    Chen B J, Lv S Z, Huang S H 2001 J. Inorg. Mater. 16 223

    [50]

    肖凯, 杨中民 2008 稀有金属材料与工程 37 80

    Xiao K, Yang Z M 2008 Rare Metal Mat. Eng. 37 80

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019 Chin. Opt. 12 112Google Scholar

    [52]

    赵延 2022 博士学位论文 (上海: 同济大学)

    Zhao Y 2022 Ph. D. Dissertation (Shanghai: Tongji University

    [53]

    Singh S K, Kumar K, Rai S B 2009 Sensor Actuat A-Phys. 149 16Google Scholar

    [54]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019 J. Phys. Chem. C 123 29818Google Scholar

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019 J. Am. Ceram. Soc. 102 6564Google Scholar

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015 J. Am. Ceram. Soc. 98 3824Google Scholar

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021 J. Lumin. 236 118089Google Scholar

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020 Appl. Surf. Sci. 527 146825Google Scholar

    [60]

    修向前, 李斌斌, 张荣, 陈琳, 谢自力, 韩平, 施毅, 郑有炓 2007 半导体学报 28 145

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y D 2007 Chin. J. Semicond. 28 145

    [61]

    Ravi S, Shashikanth F W 2020 Mater. Lett. 264 127331Google Scholar

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010 Angew. Chem. Int. Ed. 49 173Google Scholar

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010 J. Phys. Chem. C 114 15574Google Scholar

  • 图 1  未掺杂AlN和AlN:Er3+松树状纳米结构的XRD图谱(插图为(100), (002), (101)峰的放大图)

    Figure 1.  XRD patterns of undoped AlN and AlN:Er3+ pine-shaped nanostructure (the enlarged (100), (002) and (101) peaks in inset).

    图 2  AlN:Er3+松树状纳米结构的(a) XPS全图谱, 以及(b) Al 2p, (c) N 1s, (d) Er 4d的高分辨率图谱

    Figure 2.  XPS patterns of AlN:Er3+ pine-shaped nanostructure: (a) Survey spectrum; high resolution spectra for (b) Al 2p, (c) N 1s, (d) Er 4d.

    图 3  (a)—(c) AlN:Er3+松树状纳米结构从低倍到高倍的SEM图像; (d) EDS图谱

    Figure 3.  (a)–(c) Scanning electron microscopy images from low to high magnification of AlN:Er3+ pine-shaped nanostructure; (d) EDS spectrum.

    图 4  AlN:Er3+松树状纳米结构的(a) TEM图像、(b) HRTEM图像、(c) FFT图像和(d) EDS元素映射图像

    Figure 4.  (a) TEM image, (b) HRTEM image, (c) FFT pattern and (d) EDS element mapping of AlN:Er3+ pine-shaped nanostructure.

    图 5  (a)未掺杂的AlN和AlN:Er3+松树状纳米结构的漫反射光谱; (b) AlN:Er3+松树状纳米结构在548 nm处的激发光谱; (c)室温下AlN:Er3+松树状纳米结构在可见光(378 nm激发)到红外光(532 nm激发)范围内的发射光谱(插图为可见光范围内的光致发光成像); (d) Er3+能级跃迁图

    Figure 5.  (a) DRSs of undoped AlN and AlN:Er3+ pine-shaped nanostructure; (b) excitation spectrum of AlN:Er3+ pine-shaped nanostructure at 548 nm; (c) the room-temperature Vis-NIR emission spectrum of AlN:Er3+ pine-shaped nanostructure (the visible PL imaging in inset); (d) the schematic energy level diagram for Er3+ ions.

    图 6  548 nm处的PL衰减曲线

    Figure 6.  PL decay curve at 548 nm.

    图 7  (a)不同温度下AlN:Er3+松树状纳米结构的PL光谱; (b) AlN:Er3+松树状纳米结构在293—553 K的FIR (I527 nm/I548 nm)及对其随温度变化线性拟合结果(三角形标记代表FIR的实验值, 虚线为拟合曲线); 相对灵敏度Sr随温度的变化(菱形标记代表Sr的值)

    Figure 7.  (a) Temperature-dependence spectra of AlN:Er3+ pine-shaped nanostructure; (b) FIR values of AlN:Er3+ pine-shaped nanostructure at the temperature of 293−553 K and the linear fitted results between the FIR and the temperature (the triangular markers represent the experimental values of FIR, and the dashed line is the fitting curve); the variation of relative sensitivity (Sr) with temperature (the diamond markers represent the values of Sr).

    图 8  (a)室温下AlN:Er3+松树状纳米结构的磁滞回线; (b)单位磁化强度随温度的变化

    Figure 8.  (a) Magnetization hysteresis loops of AlN:Er3+ pine-shaped nanostructure measured at room temperature; (b) variation of unit magnetization intensity with temperature.

    图 9  自旋极化态密度图 (a) ErAl体系; (b) ErAl + VN体系; (c) ErAl + VAl体系; 正值为自旋向上, 负值为自旋向下, 费米能级用垂直虚线来表示

    Figure 9.  Total DOS and partial DOS of Er atom, Al atom and N atom for (a) ErAl system, (b) ErAl + VN system, (c) ErAl + VAl system. The Fermi level is indicated by the vertical dashed line.

    图 10  自旋电荷密度的空间分布 (a) ErAl体系; (b) ErAl + VN体系; (c) ErAl + VAl体系

    Figure 10.  Spatial distribution of the spin density: (a) ErAl system; (b) ErAl + VN system; (c) ErAl + VAl system.

    表 1  基于FIR技术对Er3+掺杂不同材料的相对灵敏度(Sr)进行比较

    Table 1.  Comparison of relative sensitivity (Sr) of Er3+ doped different materials based on FIR technology.

    Er3+掺杂
    不同材料
    Sr范围/(10–2 K–1) T范围/K 文献 年份
    AlN松树状
    纳米结构
    0.53—1.9 293—553 本文 2024
    AlN薄膜 0.25—2.2 110—550 [34] 2023
    Sr9Y2W4O24 ~1.33 293—443 [48] 2024
    La2MgTiO6 ~1.12 303—483 [54] 2021
    LaGdO3 0.1—1.2 298—900 [55] 2019
    Ag@NaGdF4 ~0.42 298—573 [56] 2019
    Sr2YbF7 ~0.62 300—500 [57] 2015
    DownLoad: CSV

    表 2  VAl和ErAl + VAl体系在富Al和富N条件下的形成能

    Table 2.  Formation energy under the Al-rich and N-rich conditions of the VAl and ErAl + VAl systems.

    体系形成能/eV
    富Al富N
    VAl9.19356.1735
    ErAl + VAl10.358314.31831
    DownLoad: CSV
    Baidu
  • [1]

    李志杰, 田鸣, 贺连龙 2011 60 098101Google Scholar

    Li Z J, Tian M, He L L 2011 Acta Phys. Sin. 60 098101Google Scholar

    [2]

    蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉 2013 62 217504Google Scholar

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013 Acta Phys. Sin. 62 217504Google Scholar

    [3]

    程赛, 吕惠民, 石振海, 崔静雅 2012 61 126201Google Scholar

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012 Acta Phys. Sin. 61 126201Google Scholar

    [4]

    余森, 许晟瑞, 陶鸿昌, 王海涛, 安瑕, 杨赫, 许钪, 张进成, 郝跃 2024 73 196101Google Scholar

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024 Acta Phys. Sin. 73 196101Google Scholar

    [5]

    赵罡, 梁汉普, 段益峰 2023 72 096301Google Scholar

    Zhao G, Liang H P, Duan Y F 2023 Acta Phys. Sin. 72 096301Google Scholar

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024 Chin. Phys. B 33 106801Google Scholar

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007 J. Appl. Phys. 101 113918Google Scholar

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 89 192111Google Scholar

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021 Optik 243 167455Google Scholar

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019 Chin. Opt. Lett. 17 111602Google Scholar

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022 Opt. Mater. 128 112366Google Scholar

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021 J. Lumin. 236 118082Google Scholar

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023 Appl. Phys. Lett. 122 091106Google Scholar

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025 J. Phys. Chem. Solids 197 112442Google Scholar

    [15]

    Rougab M, Gueddouh A 2021 Appl. Phys. A 127 969Google Scholar

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022 Phys. Rev. Mater. 6 094603Google Scholar

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023 J. Lumin. 255 119605Google Scholar

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996 Appl. Phys. Lett. 69 2083Google Scholar

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997 J. Lumin. 72-74 284Google Scholar

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992Google Scholar

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999 Appl. Phys. Lett. 74 3008Google Scholar

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000 Surf. Coat. Tech. 132 99Google Scholar

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003 Opt. Mater. 24 321Google Scholar

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001 Appl. Surf. Sci. 175-176 480Google Scholar

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005 J. Appl. Phys. 98 093514Google Scholar

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012 J. Lumin. 132 2367Google Scholar

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014 Appl. Surf. Sci. 307 189Google Scholar

    [28]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5236Google Scholar

    [29]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5361Google Scholar

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016 J. Lumin. 171 42Google Scholar

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017 J. Alloys Compd. 727 735Google Scholar

    [32]

    Hu X W, Tai Z W, Yang C T 2018 Mater. Lett. 217 281Google Scholar

    [33]

    Ge S W, Zhang B Z, Yang C T 2019 Surf. Coat. Tech. 358 404Google Scholar

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009 Appl. Phys. Lett. 95 162501Google Scholar

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022 J. Alloys Compd. 907 164461Google Scholar

    [37]

    Narang V, Korakakis D, Seehra M S 2014 J. Appl. Phys. 116 213911Google Scholar

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019 J. Lumin. 206 33Google Scholar

    [39]

    类伟巍 2009 博士学位论文 (长春: 吉林大学)

    Lei W W 2009 Ph. D. Dissertation (Changchun: Jilin University

    [40]

    Xu Y S, Yao B B, Cui Q L 2016 RSC Adv. 6 113204Google Scholar

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008 J. Nanosci. Nanotechno. 8 237Google Scholar

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010 Crystengcomm 12 511Google Scholar

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008 J. Phys. Chem. C 112 13353Google Scholar

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019 J. Alloys Compd. 775 498Google Scholar

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014 Opt. Mater. 36 1378Google Scholar

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015 J. Mater. Sci-Mater. EI 26 6502Google Scholar

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006 J. Phys. Chem. B 110 21593Google Scholar

    [48]

    Kumari S, Rao A S, Sinha R K 2024 ChemPhotoChem 8 e202300226Google Scholar

    [49]

    陈宝玖, 吕少哲, 黄世华 2001 无机材料学报 16 223

    Chen B J, Lv S Z, Huang S H 2001 J. Inorg. Mater. 16 223

    [50]

    肖凯, 杨中民 2008 稀有金属材料与工程 37 80

    Xiao K, Yang Z M 2008 Rare Metal Mat. Eng. 37 80

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019 Chin. Opt. 12 112Google Scholar

    [52]

    赵延 2022 博士学位论文 (上海: 同济大学)

    Zhao Y 2022 Ph. D. Dissertation (Shanghai: Tongji University

    [53]

    Singh S K, Kumar K, Rai S B 2009 Sensor Actuat A-Phys. 149 16Google Scholar

    [54]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019 J. Phys. Chem. C 123 29818Google Scholar

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019 J. Am. Ceram. Soc. 102 6564Google Scholar

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015 J. Am. Ceram. Soc. 98 3824Google Scholar

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021 J. Lumin. 236 118089Google Scholar

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020 Appl. Surf. Sci. 527 146825Google Scholar

    [60]

    修向前, 李斌斌, 张荣, 陈琳, 谢自力, 韩平, 施毅, 郑有炓 2007 半导体学报 28 145

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y D 2007 Chin. J. Semicond. 28 145

    [61]

    Ravi S, Shashikanth F W 2020 Mater. Lett. 264 127331Google Scholar

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010 Angew. Chem. Int. Ed. 49 173Google Scholar

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010 J. Phys. Chem. C 114 15574Google Scholar

  • [1] Zhang Hao-Jie, Zhang Ru-Fei, Fu Li-Cheng, Gu Yi-Lun, Zhi Guo-Xiang, Dong Jin-Ou, Zhao Xue-Qin, Ning Fan-Long. (La1–xSrx)(Zn1–xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [2] Fan Ji-Yu, Feng Yu, Lu Di, Zhang Wei-Chun, Hu Da-Zhi, Yang Yu-E, Tang Ru-Jun, Hong Bo, Ling Lang-Sheng, Wang Cai-Xia, Ma Chun-Lan, Zhu Yan. Magnetic and eletronic transport properties in n-type diluted magnetic semiconductor Ge0.96–xBixFe0.04Te film. Acta Physica Sinica, 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [3] Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate. Acta Physica Sinica, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [4] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [5] Wang Jian, Xie Zi-Li, Zhang Rong, Zhang Yun, Liu Bin, Chen Peng, Han Ping. Study on the photoluminescence properties of InN films. Acta Physica Sinica, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [6] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [7] Wang Shi-Wei, Zhu Ming-Yuan, Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [8] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [9] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [10] Chen Jing, Jin Guo-Jun, Ma Yu-Qiang. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2009, 58(4): 2707-2712. doi: 10.7498/aps.58.2707
    [11] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [12] Lu Zhong-Lin, Zou Wen-Qin, Xu Ming-Xiang, Zhang Feng-Ming. Synthesis and electric, magnetic properties of single crystalline and twin-crystalline Co-doped ZnO thin films. Acta Physica Sinica, 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [13] Wang Ye-An, Qin Fu-Wen, Wu Dong-Jiang, Wu Ai-Min, Xu Yin, Gu Biao. Analysis of diluted magnetic semiconductor GaMnN grown by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition. Acta Physica Sinica, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [14] Liao Guo-Jin, Yan Shao-Feng, Ba De-Chun. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [15] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [16] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [17] Lin Qiu-Bao, Li Ren-Quan, Zeng Yong-Zhi, Zhu Zi-Zhong. Electronic and magnetic properties of 3d transition-metal-doped Ⅲ-Ⅴ semiconductors:first-principle calculations. Acta Physica Sinica, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [18] Wei Zhi-Ren, Li Jun, Liu Chao, Lin Lin, Zheng Yi-Bo, Ge Shi-Yan, Zhang Hua-Wei, Dong Guo-Yi, Dou Jun-Hong. Effect of Cu on the magnetism of Zn1-xFexO DMS. Acta Physica Sinica, 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [19] Wang Yi, Sun Lei, Han De-Dong, Liu Li-Feng, Kang Jin-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [20] Zeng Yong-Zhi, Huang Mei-Chun. Electronic and magnetic properties of 3d transition-metal-doped Ⅱ-Ⅳ-Ⅴ22 chalcopyrite semiconductor. Acta Physica Sinica, 2005, 54(4): 1749-1755. doi: 10.7498/aps.54.1749
Metrics
  • Abstract views:  784
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2024
  • Accepted Date:  09 January 2025
  • Available Online:  24 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map