搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究

樊济宇 冯瑜 陆地 张卫纯 胡大治 杨玉娥 汤如俊 洪波 凌浪生 王彩霞 马春兰 朱岩

引用本文:
Citation:

N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究

樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩

Magnetic and eletronic transport properties in n-type diluted magnetic semiconductor Ge0.96–xBixFe0.04Te film

Fan Ji-Yu, Feng Yu, Lu Di, Zhang Wei-Chun, Hu Da-Zhi, Yang Yu-E, Tang Ru-Jun, Hong Bo, Ling Lang-Sheng, Wang Cai-Xia, Ma Chun-Lan, Zhu Yan
PDF
HTML
导出引用
  • GeTe基稀磁半导体材料因具有可独立调控载流子浓度和磁性离子浓度的特性而受到广泛关注. 本文利用脉冲激光沉积技术制备了该体系的单晶外延薄膜, 并通过高价态Bi元素部分取代Ge元素的方法实现了材料中载流子类型从空穴向电子的转变, 即制备出N型GeTe基稀磁半导体. 测量结果表明, 无论是室温还是低温下的Hall电阻曲线皆呈现负斜率, 说明体系中载流子是电子; 并且当Bi掺杂量达到32%时, 电子浓度为1021/cm3. 变温输运性质的测量证明体系的输运行为呈现半导体特征. 通过测量低温10 K下的绝热磁化曲线, 在高Bi掺杂体系中观测到了明显的铁磁行为, 而低于32%Bi掺杂量的体系中未观察到. 这一结果说明, 高掺杂Bi的替代导致载流子浓度的增加, 促进了载流子传递Ruderman-Kittel-Kasuya-Yoshida相互作用, 使得分散的Fe-Fe之间产生磁耦合作用, 进而形成铁磁有序态.
    The epitaxial thin films of Ge0.96−xBixFe0.04Te are deposited on BaF2 substrates by using pulsed laser deposition technique. The thin films with three different compositions i.e. Ge0.8Bi0.2Te, Ge0.76Bi0.2Fe0.04Te, and Ge0.64Bi0.32Fe0.04Te are prepared in this wok. Their high-quality epitaxy and crystallinity are confirmed by X-ray diffraction and atomic force microscopy. According to the measurements of Hall effect variation, we find that each of all curves exhibits a negative slope for the different films as the temperature varies from low temperature to room temperature, indicating that Ge0.96−xBixFe0.04Te films are n-type material because the substitution of Bi for Ge makes the carriers change from holes into electrons. Temperature dependence of resistivity confirms that the electronic transport behavior for each of Ge0.96−xBixFe0.04Te thin films exhibits a typical semiconductor characteristic. From the measurements of temperature dependence of electronic transport under various external magnetic fields, we find that the Ge0.64Bi0.32Fe0.04Te thin film shows some magnetoresistive effect while other composition films do not possess such a property. Based on the linear fitting of temperature dependence of magnetic susceptibility in high temperature and low temperature region, the magnetic property of Ge0.64Bi0.32Fe0.04Te thin film changes from 253 K. Together with the study of magnetic susceptibility curve in the paramagnetic region, the Curie-Weiss temperature is determined to be 102 K. At a low temperature of 10.0 K, we observe an obvious ferromagnetic hystersis loop in Ge0.64Bi0.32Fe0.04Te instead of in Ge0.76Bi0.2Fe0.04Te thin film. These results imply that the increase of Bi dopant is main reason for the establishment of ferromagnetic ordering state. The carrier concentration increases and thus promotes the carriers transporting the Ruderman-Kittel-Kasuya-Yoshida interaction, thereby leading to the separated Fe ions producing the magnetic interaction and forming an n-type diluted magnetic semiconductor.
      通信作者: 马春兰, wlxmcl@mail.usts.edu.cn ; 朱岩, yzhu@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11204131, 11374159)、江苏省高等学校自然科学研究重大项目资助(批准号: 17KJA140001)和江苏省“六大人才高峰”高层次人才项目(批准号: XCL-078)资助的课题.
      Corresponding author: Ma Chun-Lan, wlxmcl@mail.usts.edu.cn ; Zhu Yan, yzhu@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204131, 11374159), NSF of Jiangsu Higher Education Institutions, China (Grant No. 17KJA140001), and the Six Talent Peaks Project of Jiangsu, China (Grant No. XCL-078).
    [1]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944Google Scholar

    [2]

    Burch K, Shrekenhamer D, Singley E, Stephens J, Sheu B, Kawakami R, Schiffer P, Samarth N, Awschalom D, Basov D 2006 Phys. Rev. Lett. 97 087208Google Scholar

    [3]

    Richardella A, Roushan P, Mack S, Zhou B, Huse D, Awschalom D, Yazdani A 2010 Science 327 665Google Scholar

    [4]

    Li Y Y, Cao Y F, Wei G N, Li Y Y, Ji Y, Wang K Y, Edmonds K W, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 022401Google Scholar

    [5]

    Prinz G A 1998 Science 282 1660Google Scholar

    [6]

    Pappert K, Humpfner S, Gould C, Wenisch J, Brunner K, Schmidt G, Molenkamp L W 2007 Nat. Phys. 3 573Google Scholar

    [7]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102Google Scholar

    [8]

    Fan J Y, Eom J H 2008 Appl. Phys. Lett. 92 142101Google Scholar

    [9]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [10]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mat. 16 712Google Scholar

    [11]

    Kolobov A V, Tominaga J 2003 Appl. Phys. Lett. 82 382Google Scholar

    [12]

    Lee S H, Ko D K, Jung Y, Agarwal R 2006 Appl. Phys. Lett. 89 223116Google Scholar

    [13]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201Google Scholar

    [14]

    Sante D D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [15]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [16]

    杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民 2018 67 187101Google Scholar

    Du C X, Wang T, Du Y Y, Jia Q, Cui Y T, Hu A Y, Xiong Y Q, Wu Z M 2018 Acta Phys. Sin. 67 187101Google Scholar

    [17]

    Jantsch W 1983 Dielectric Properties and Soft Modes in Semiconducting (Pb, Sn, Ge)Te, Springer Tracts in Modern Physics Vol. 99 (Berlin: Springer Verlag)

    [18]

    Fukuma Y, Asada H, Miyawaki S, Koyanagi T, Senba S, Goto K, Sato H 2008 Appl. Phys. Lett. 93 252502

    [19]

    Lechner R T, Springholz G, Hassan M, Groiss H, Kirchschlager R, Stangl J, Hrauda N, Bauer G 2010 Appl. Phys. Lett. 97 023101Google Scholar

    [20]

    Hassan M, Springholz G, Lechner R T, Groiss H, Kirchschlager R, Bauer G 2011 J. Cryst. Growth 323 363Google Scholar

    [21]

    Tong F, J. Hao H, Chen Z P, Gao G Y, Tong H, Miao X S 2011 Appl. Phys. Lett. 99 202508Google Scholar

    [22]

    Liu J D, Cheng X M, Tong F, Miao X S 2014 J. Appl. Phys. 116 043901Google Scholar

    [23]

    Xu L S, Han H, Fan J Y, Shi D N, Hu D Z, Du H F, Zhang L, Zhang Y H, Yang H 2017 EPL 117 47004Google Scholar

    [24]

    Chen L L, Fan J Y, Tong W, Hu D Z, Du H F, Zhang L, Ling L S, Pi L, Zhang Y H, Yang H 2018 J. Mater. Sci. 53 323Google Scholar

  • 图 1  (a) Ge0.76Bi0.2Fe0.04Te薄膜XRD扫描图; (b)沿着{220}面内XRD扫描图

    Fig. 1.  (a) XRD diffraction pattern of Ge0.76Bi0.2Fe0.04Te film; (b) φ-scans of Ge0.76Bi0.2Fe0.04Te film in {220} plane.

    图 2  (a) Ge0.76Bi0.2Fe0.04Te薄膜表面AFM图; (b)沿着红线测试薄膜表面高度起伏结果

    Fig. 2.  (a) AFM 5 μm × 5 μm images of Ge0.76Bi0.2Fe0.04Te film; (b) the height profile along the red solid line.

    图 3  (a) Ge0.76Bi0.2Fe0.04Te薄膜不同温度下霍尔效应测量结果, 插图为载流子浓度随温度变化; (b) Ge0.64Bi0.32Fe0.04Te薄膜不同温度下霍尔效应测量结果, 插图为载流子浓度随温度变化

    Fig. 3.  (a) Magnetic field dependence of Hall voltage for Ge0.76Bi0.2Fe0.04Te film under different temperatures, inset shows the temperature dependence of carrier concentrations; (b) magnetic field dependence of Hall voltage for Ge0.64Bi0.32Fe0.04Te film under different temperatures, inset shows the temperature dependence of carrier concentrations.

    图 4  (a) Ge0.76Bi0.2Fe0.04Te和Ge0.64Bi0.32Fe0.04Te电阻率随温度变化曲线; (b)迁移率随温度变化曲线; (c) Ge0.76Bi0.2Fe0.04Te薄膜在零磁场和3.0 T磁场下变温电阻率曲线; (d) Ge0.64Bi0.32Fe0.04Te薄膜在零磁场和3.0 T磁场下变温电阻率曲线

    Fig. 4.  (a) Temperature dependent resistivity of Ge0.76Bi0.2Fe0.04Te and Ge0.64Bi0.32Fe0.04Te film; (b) temperature dependent resistivity of mobility; (c) temperature dependent resistivity of Ge0.76Bi0.2Fe0.04Te film under 0 T and 3.0 T field; (d) emperature dependent resistivity of Ge0.64Bi0.32Fe0.04Te film under 0 T and 3.0 T field.

    图 5  Ge0.64Bi0.32Fe0.04Te薄膜磁化率随温度变化曲线; 插图为磁化率倒数随温度变化曲线, 直线是利用居里外斯定律拟合的结果

    Fig. 5.  Temperature dependence of magnetic susceptibility curves for Ge0.64Bi0.32Fe0.04Te film; inset shows temperature dependence of inverse magnetic susceptibility and the solid line is the fitting result with the Cuire-Weiss law.

    图 6  在10.0 K温度下Ge0.64Bi0.32Fe0.04Te薄膜磁滞回线; 插图为低磁场部分放大图像

    Fig. 6.  Isothermal magnetization curves for Ge0.64Bi0.32Fe0.04Te film at 10.0 K, and inset shows the magnified hysteresis loop.

    Baidu
  • [1]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944Google Scholar

    [2]

    Burch K, Shrekenhamer D, Singley E, Stephens J, Sheu B, Kawakami R, Schiffer P, Samarth N, Awschalom D, Basov D 2006 Phys. Rev. Lett. 97 087208Google Scholar

    [3]

    Richardella A, Roushan P, Mack S, Zhou B, Huse D, Awschalom D, Yazdani A 2010 Science 327 665Google Scholar

    [4]

    Li Y Y, Cao Y F, Wei G N, Li Y Y, Ji Y, Wang K Y, Edmonds K W, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 022401Google Scholar

    [5]

    Prinz G A 1998 Science 282 1660Google Scholar

    [6]

    Pappert K, Humpfner S, Gould C, Wenisch J, Brunner K, Schmidt G, Molenkamp L W 2007 Nat. Phys. 3 573Google Scholar

    [7]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102Google Scholar

    [8]

    Fan J Y, Eom J H 2008 Appl. Phys. Lett. 92 142101Google Scholar

    [9]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [10]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mat. 16 712Google Scholar

    [11]

    Kolobov A V, Tominaga J 2003 Appl. Phys. Lett. 82 382Google Scholar

    [12]

    Lee S H, Ko D K, Jung Y, Agarwal R 2006 Appl. Phys. Lett. 89 223116Google Scholar

    [13]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201Google Scholar

    [14]

    Sante D D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [15]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [16]

    杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民 2018 67 187101Google Scholar

    Du C X, Wang T, Du Y Y, Jia Q, Cui Y T, Hu A Y, Xiong Y Q, Wu Z M 2018 Acta Phys. Sin. 67 187101Google Scholar

    [17]

    Jantsch W 1983 Dielectric Properties and Soft Modes in Semiconducting (Pb, Sn, Ge)Te, Springer Tracts in Modern Physics Vol. 99 (Berlin: Springer Verlag)

    [18]

    Fukuma Y, Asada H, Miyawaki S, Koyanagi T, Senba S, Goto K, Sato H 2008 Appl. Phys. Lett. 93 252502

    [19]

    Lechner R T, Springholz G, Hassan M, Groiss H, Kirchschlager R, Stangl J, Hrauda N, Bauer G 2010 Appl. Phys. Lett. 97 023101Google Scholar

    [20]

    Hassan M, Springholz G, Lechner R T, Groiss H, Kirchschlager R, Bauer G 2011 J. Cryst. Growth 323 363Google Scholar

    [21]

    Tong F, J. Hao H, Chen Z P, Gao G Y, Tong H, Miao X S 2011 Appl. Phys. Lett. 99 202508Google Scholar

    [22]

    Liu J D, Cheng X M, Tong F, Miao X S 2014 J. Appl. Phys. 116 043901Google Scholar

    [23]

    Xu L S, Han H, Fan J Y, Shi D N, Hu D Z, Du H F, Zhang L, Zhang Y H, Yang H 2017 EPL 117 47004Google Scholar

    [24]

    Chen L L, Fan J Y, Tong W, Hu D Z, Du H F, Zhang L, Ling L S, Pi L, Zhang Y H, Yang H 2018 J. Mater. Sci. 53 323Google Scholar

  • [1] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为.  , 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [2] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO.  , 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [3] 陈延彬, 张帆, 张伦勇, 周健, 张善涛, 陈延峰. 探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性.  , 2015, 64(9): 097502. doi: 10.7498/aps.64.097502
    [4] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [5] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响.  , 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [6] 李志文, 岂云开, 顾建军, 孙会元. 退火氛围对掺杂ZnO薄膜磁性的影响.  , 2012, 61(13): 137501. doi: 10.7498/aps.61.137501
    [7] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量.  , 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [8] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [9] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [10] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体.  , 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [11] 刘学超, 陈之战, 施尔畏, 严成锋, 黄维, 宋力昕, 周克瑾, 崔明启, 贺博, 韦世强. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究.  , 2009, 58(1): 498-504. doi: 10.7498/aps.58.498
    [12] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究.  , 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [13] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质.  , 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [14] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究.  , 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [15] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究.  , 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [16] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [17] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算.  , 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [18] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响.  , 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [19] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [20] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
计量
  • 文章访问数:  9626
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-03-19
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map