Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pine-shaped AlN:Er3+ nanostructure:A multifunctional material with both luminescent and magnetic properties

DING Xin TIAN Zifeng WANG Qiushi LIU Cailong CUI Hang

Citation:

Pine-shaped AlN:Er3+ nanostructure:A multifunctional material with both luminescent and magnetic properties

DING Xin, TIAN Zifeng, WANG Qiushi, LIU Cailong, CUI Hang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures were synthesized via a direct current arc discharge plasma method, utilizing a direct reaction between aluminum (Al) and erbium oxide (Er₂O₃) mixed powders in a nitrogen (N2) atmosphere. X-ray diffraction (XRD) analysis revealed a shift in the diffraction peaks towards lower angles for the doped sample compared to undoped AlN, indicative of lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Al, N, and Er, while energy-dispersive X-ray spectroscopy (EDS) quantified the atomic ratio at approximately 46.9:52.8:0.3 for Al:N:Er. The nanostructures, resembling pine trees, measured 5-10 μm in height and 1-3 μm in width, with branch nanowires extending 500 nm to 1 μm in length and 50-100 nm in diameter. These branches, radiating at approximately 60° from the main trunk, were found to grow along the [100] direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacings of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identified distinct emission peaks in the visible (527, 548, and 679 nm) and near-infrared (801, 871, and 977 nm) regions, attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm was measured at 9.63 μs, slightly shorter than other Er3+-doped materials. The nanostructures demonstrated superior temperature sensing capabilities with a maximum relative sensitivity of 1.9% K⁻¹ at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization revealed room-temperature ferromagnetism with a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, suggesting potential for room-temperature spintronic applications. First-principle calculations attributed the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings underscore the potential of AlN:Er3+ pine-shaped nanostructures in diverse applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.
  • [1]

    Li Z J, Tian M, He L L 2011Acta Phys. Sin. 60 098101(in Chinese)[李志杰,田鸣,贺连龙2011 60 098101]

    [2]

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013Acta Phys. Sin. 62 217504(in Chinese)[蓝雷雷,胡新宇,顾广瑞,姜丽娜,吴宝嘉2013 62 217504]

    [3]

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012Acta Phys. Sin. 61 126201(in Chinese)[程赛,吕惠民,石振海,崔静雅2012 61 126201]

    [4]

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024Acta Phys. Sin 73 196101(in Chinese)[余森,许晟瑞,陶鸿昌,王海涛,安瑕,杨赫,许钪,张进成,郝跃2024 73 196101]

    [5]

    Zhao G, Liang H P, Duan Y F 2023Acta Phys. Sin. 72 096301(in Chinese)[赵罡,梁汉普,段益峰2023 72 096301]

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024Chin Phys. B 33 106801

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007J. Appl. Phys. 101 113918

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006Appl. Phys. Lett. 89 192111

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021Optik. 243 167455

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019Chin opt Lett. 17 111602

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022Opt Mater. 128 112366

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021J. Lumin. 236 118082

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023Appl. Phys. Lett. 122 091106

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025J. Phys. Chem. Solids. 197 112442

    [15]

    Rougab M, Gueddouh A 2021Appl. Phys. A 127 969

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022Phys. Rev. Mater. 6 094603

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023J. Lumin. 255 119605

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996Appl. Phys. Lett. 69 2083

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997J. Lumin. 72-74 284

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994Appl. Phys. Lett. 65 992

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999Appl. Phys. Lett. 74 3008

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000Surf. Coat. Tech. 132 99

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003Opt. Mater. 24 321

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001Appl. Surf. Sci. 175-176 480

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005J. Appl. Phys. 98 093514

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012J. Lumin. 132 2367

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014Appl. Surf. Sci. 307 189

    [28]

    Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5236

    [29]

    Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5361

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016J. Lumin. 171 42

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017J. Alloys Compd. 727 735

    [32]

    Hu X W, Tai Z W, Yang C T 2018Mater. Lett. 217 281

    [33]

    Ge S W, Zhang B Z, Yang C T 2019Surf. Coat. Tech. 358 404

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023J. Alloys Compd. 946 169350

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009Appl. Phys. Lett. 95 162501

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022J. Alloys Compd. 907 164461

    [37]

    Narang V, Korakakis D, Seehra M S 2014J. Appl. Phys. 116 213911

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019J. Lumin. 206 33

    [39]

    Lei W W 2009Ph. D. Dissertation (Changchun:Jilin University) (in Chinese) [类伟巍2009博士学位论文(长春:吉林大学)]

    [40]

    Xu Y S, Yao B B, Cui Q L 2016RSC Adv. 6 113204

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008J. Nanosci Nanotechno. 8 237

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010Crystengcomm. 12 511

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008J. Phys. Chem. C. 112 13353

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019J. Alloys Compd. 775 498

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014Opt. Mater. 36 1378

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015J. Mater Sci-mater EI 26 6502

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006J. Phys. Chem. B 110 21593

    [48]

    Kumari S, Rao A S, Sinha R K 2024ChemPhotoChem. 8 e202300226

    [49]

    Chen B J, Lv S Z, Huang S H 2001J Inorg Mater. 16 223(in Chinese)[陈宝玖,吕少哲,黄世华2001无机材料学报16 223]

    [50]

    Xiao K, Yang Z M 2008Rare Metal Mat Eng. 37 80(in Chinese)[肖凯,杨中民2008稀有金属材料与工程37 80]

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019Chin Opt. 12 112

    [52]

    Zhao Y 2022Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese) [赵延2022博士学位论文(上海:同济大学)]

    [53]

    Singh S K, Kumar K, Rai S B 2009Sensor Actuat A-Phys. 149 16

    [54]

    Hua Y B, Yu J S 2021ACS Sustainable Chem Eng. 9 5105

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019J. Phys. Chem. C 123 29818

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019J. Am. Ceram. Soc. 102 6564

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015J. Am. Ceram. Soc. 98 3824

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021J. Lumin. 236 118089

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020Appl. Surf. Sci. 527 146825

    [60]

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y L 2007J. Semicond. 28 145(in Chinese)[修向前,李斌斌,张荣,陈琳,谢自力,韩平,施毅,郑有炓 2007半导体学报28 145]

    [61]

    Ravi S, Shashikanth F W 2020Mater Lett. 264 127331

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010Angew. Chem. Int. Ed. 49 173

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010J. Phys. Chem. C 114 15574

  • [1] Zhang Hao-Jie, Zhang Ru-Fei, Fu Li-Cheng, Gu Yi-Lun, Zhi Guo-Xiang, Dong Jin-Ou, Zhao Xue-Qin, Ning Fan-Long. (La1–xSrx)(Zn1–xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, doi: 10.7498/aps.70.20201966
    [2] Fan Ji-Yu, Feng Yu, Lu Di, Zhang Wei-Chun, Hu Da-Zhi, Yang Yu-E, Tang Ru-Jun, Hong Bo, Ling Lang-Sheng, Wang Cai-Xia, Ma Chun-Lan, Zhu Yan. Magnetic and eletronic transport properties in n-type diluted magnetic semiconductor Ge0.96–xBixFe0.04Te film. Acta Physica Sinica, doi: 10.7498/aps.68.20190019
    [3] Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate. Acta Physica Sinica, doi: 10.7498/aps.64.177804
    [4] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, doi: 10.7498/aps.64.077501
    [5] Wang Jian, Xie Zi-Li, Zhang Rong, Zhang Yun, Liu Bin, Chen Peng, Han Ping. Study on the photoluminescence properties of InN films. Acta Physica Sinica, doi: 10.7498/aps.62.117802
    [6] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.027503
    [7] Wang Shi-Wei, Zhu Ming-Yuan, Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, doi: 10.7498/aps.61.198103
    [8] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, doi: 10.7498/aps.61.078106
    [9] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, doi: 10.7498/aps.61.126201
    [10] Chen Jing, Jin Guo-Jun, Ma Yu-Qiang. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, doi: 10.7498/aps.58.2707
    [11] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, doi: 10.7498/aps.58.8560
    [12] Lu Zhong-Lin, Zou Wen-Qin, Xu Ming-Xiang, Zhang Feng-Ming. Synthesis and electric, magnetic properties of single crystalline and twin-crystalline Co-doped ZnO thin films. Acta Physica Sinica, doi: 10.7498/aps.58.8467
    [13] Wang Ye-An, Qin Fu-Wen, Wu Dong-Jiang, Wu Ai-Min, Xu Yin, Gu Biao. Analysis of diluted magnetic semiconductor GaMnN grown by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.57.508
    [14] Liao Guo-Jin, Yan Shao-Feng, Ba De-Chun. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, doi: 10.7498/aps.57.7327
    [15] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, doi: 10.7498/aps.57.4539
    [16] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, doi: 10.7498/aps.57.3661
    [17] Wei Zhi-Ren, Li Jun, Liu Chao, Lin Lin, Zheng Yi-Bo, Ge Shi-Yan, Zhang Hua-Wei, Dong Guo-Yi, Dou Jun-Hong. Effect of Cu on the magnetism of Zn1-xFexO DMS. Acta Physica Sinica, doi: 10.7498/aps.55.5521
    [18] Lin Qiu-Bao, Li Ren-Quan, Zeng Yong-Zhi, Zhu Zi-Zhong. Electronic and magnetic properties of 3d transition-metal-doped Ⅲ-Ⅴ semiconductors:first-principle calculations. Acta Physica Sinica, doi: 10.7498/aps.55.873
    [19] Wang Yi, Sun Lei, Han De-Dong, Liu Li-Feng, Kang Jin-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, doi: 10.7498/aps.55.6651
    [20] Zeng Yong-Zhi, Huang Mei-Chun. Electronic and magnetic properties of 3d transition-metal-doped Ⅱ-Ⅳ-Ⅴ22 chalcopyrite semiconductor. Acta Physica Sinica, doi: 10.7498/aps.54.1749
Metrics
  • Abstract views:  316
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回
Baidu
map