Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of bubble breakup on cavitation effect in vortex flow field

QIU Chunyang SHEN Zhuangzhi YAO Bowen

Citation:

Influence of bubble breakup on cavitation effect in vortex flow field

QIU Chunyang, SHEN Zhuangzhi, YAO Bowen
cstr: 32037.14.aps.74.20241523
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The liquid vortex flow field plays a crucial role not only in the transfer of matter and heat but also in significantly affecting the distribution of sound fields, which in turn influences the behavior of bubbles in the flow. This ultimately affects the phenomenon of acoustic cavitation. Based on the combination of the theory of bubble fragmentation and the theory of funnel-shaped vortex, in a three-dimensional vortex field. The effect of the vortex flow field (flow field generated by stirring) on the bubble breakup probability, as well as its modulation of acoustic cavitation, is investigated in this paper. In addition, the phenomena observed in experiments are explained. When the stirring speed reaches 1000 rad/min, the degradation effect no longer shows a monotonic increase, but instead begins to decline.It is demonstrated that with the increase of stirring speed, the probability of bubble breakup increases significantly. For instance, when the stirring speed is 1000 rad/min, the probability of bubble breakup is about 0.17%. At a stirring speed of 1500 rad/min, the breakup probability rises to 23%, and at 2000 rad/min, it reaches 44%. Moreover, the critical radius for bubble breakup decreases. The critical radius, as defined in this study, refers to the bubble radius at which the probability of breakup becomes nonzero. Experimental data show that at 600 rad/min, the critical radius for bubble breakup is about 200 μm, while at 2000 rad/min, it shortens to 55.5 μm. This indicates that in a high-speed rotating vortex field, bubbles may rupture before reaching their maximum cavitation radius, thus losing their effective cavitation effect.Further analysis shows that in the vortex flow field, for bubbles with an initial radius smaller than 22.5 μm, the temperature inside the bubbles upon collapse can reach as high as 2217.3 K (corresponding to an initial radius of 22.5 μm). For bubbles with an initial radius of 20 μm, the collapse temperature can even reach 2264.3 K. For bubbles with an initial radius of 40 μm, when the stirring speed does not exceed 1500 rad/min, the bubbles can still collapse under the action of the sound field, and the temperature inside the bubble upon collapse can reach 1659.6 K, which is sufficient to trigger off the cavitation effect. However, when the stirring speed exceeds 1500 rad/min, bubbles may break up too quickly and lose their cavitation capacity, thus failing to produce the expected cavitation effect.Experimental results further verify that at moderate stirring speeds (600—1000 rad/min), the acoustic cavitation effect is most pronounced, while excessively high stirring speeds suppress the enhancement of the degradation effect. This phenomenon suggests that the introduction of the vortex flow field makes the factors affecting acoustic cavitation more complex. The optimization of the acoustic cavitation effect requires not only the consideration of the sound field distribution and mass transfer but also the comprehensive factors such as gas entrainment, bubble aggregation, and breakup. Therefore, a thorough analysis and regulation of these factors are crucial for the widespread application of acoustic cavitation technology in engineering, with important theoretical value and practical significance, providing scientific basis and direction for further optimizing the acoustic cavitation process.
      Corresponding author: SHEN Zhuangzhi, szz6@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274277, 11674207).
    [1]

    宗星星 2023 现代工业经济和信息化 8 197Google Scholar

    Zong X X 2023 Mod. Ind. Econ. Inf. 8 197Google Scholar

    [2]

    Xu A, Wu Y H, Chen Z, Wu G, Wu Q, Ling F, Huang W E, Hu H Y 2020 Water Cycle 1 80Google Scholar

    [3]

    Khan N, Pu J Y, Pu C S, Xu H X, Gu X Y, Zhang L, Huang F F, Nasir M A, Ullah R 2019 Ultrason. Sonochem. 56 350Google Scholar

    [4]

    Dehghani M H, Karri R R, Koduru J R, Manickam S, Tyagi I, Mubarak N M, Suhasf 2023 Ultrason. Sonochem. 94 106302Google Scholar

    [5]

    Flores E M M, Cravotto G, Bizzi C A, Santos D, Iop G D 2021 Ultrason. Sonochem. 72 105455Google Scholar

    [6]

    Nanzai B, Mochizuki A, Wakikawa Y, Masuda Y, Oshio T, Yagishita K 2023 Ultrason. Sonochem. 95 106357Google Scholar

    [7]

    Pandit A V, Sarvothaman V P, Ranade V V 2021 Ultrason. Sonochem. 77 105677Google Scholar

    [8]

    Ji H F, Xu Y F, Shi H F, Yang X D 2024 Appl. Surf. Sci. 652 0169Google Scholar

    [9]

    Pokhrel N, Vabbina P K, Pala N 2016 Ultrason. Sonochem. 29 104Google Scholar

    [10]

    Tian S, Li B, Dai Y, Wang Z L 2023 Mater. Today. 68 254Google Scholar

    [11]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci. 29 295Google Scholar

    [12]

    王双维, 冯若, 史群 1992 自然科学进展 3 267

    Wang S W, Feng R, Shi Q 1992 Prog. Nat. Sci. 3 267

    [13]

    Zhang Z B, Gao T, Liu X Y, Li D W, Zhao J, Lei Y, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [14]

    Moholkar V S 2009 Chem. Eng. Sci. 64 5255Google Scholar

    [15]

    Ferkous H, Hamdaoui O, Pétrier C 2023 Ultrason. Sonochem. 99 106556Google Scholar

    [16]

    Wong C Y, Raymond J L, Usadi L N, Zong Z, Walton S C, Sedgwick A C, Kwan J 2023 Ultrason. Sonochem. 99 106559Google Scholar

    [17]

    Maghami S, Johansson Ö 2024 Ultrason. Sonochem. 103 106804Google Scholar

    [18]

    Zhang X G, Hao C C, Ma C, Shen Z Z, Guo J Z, Sun R G 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [19]

    Madeleine J B, Zhang D K 2014 Ultrason. Sonochem. 21 485Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Liu J H, Shen Z Z, Lin S Y 2021 Phys. Rev. E 30 344Google Scholar

    [22]

    魏鑫鑫 2022 硕士学位论文 (西安: 陕西师范大学)

    Wei X X 2022 M. S. Thesis (Xi’an: Shaanxi Normal University

    [23]

    王英瑞 2022 硕士学位论文 (西安: 陕西师范大学)

    Wang Y R 2018 M. S. Thesis (Xi’an: Shaanxi Normal University

    [24]

    Choi J K, Chahine G 2003 Comput. Mech. 32 281Google Scholar

    [25]

    陈云良, 伍超, 叶茂, 李静 2005 水利学报 36 1269Google Scholar

    Chen Y L, Wu C, Ye M, Li J 2005 J. Hydraul. Eng. 36 1269Google Scholar

    [26]

    Mih W C 2010 J. Hydraul. Res. 27 417

    [27]

    Hasan B O 2017 Chin. J. Chem. Eng. 25 698Google Scholar

    [28]

    Coolaloglou C, Tavlarides L 1977 Chem. Eng. Sci 32 1289Google Scholar

    [29]

    Hasan B O, Hamad M F, Majdi H S, Hathal M M 2021 Eur. J. Mech. B/Fluids 85 430Google Scholar

    [30]

    陈志希, 谢明辉, 周国忠, 虞培清, 王抚华 2010 化学工程 38 38

    Chen Z X, Xie M H, Zhou G Z, Yu P Q, Wang F H 2010 Chem. Eng. J. 38 38

    [31]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [32]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309.Google Scholar

    [33]

    刘金河, 沈壮志, 林书玉 2021 70 224301Google Scholar

    Liu J H, Shen Z Z, Lin S Y 2021 Acta Phys. Sin. 70 224301Google Scholar

    [34]

    Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M 2016 Ultrason. Sonochem. 29 568Google Scholar

    [35]

    Song K, Liu Y J, Ahmad U, Ma H L, Wang H X 2024 Chemosphere 350 141024Google Scholar

    [36]

    Lee D Y, Kang J, Son Y G 2023 Ultrason. Sonochem. 101 1350Google Scholar

  • 图 1  理论涡流场中质点运动粒子轨迹图

    Figure 1.  Trajectory diagram of particle motion in a theoretical vortex field.

    图 2  不同转速下, 气泡破碎概率随气泡半径变化曲线

    Figure 2.  Bubble fragmentation probability as a function of bubble radius at different rotation speeds.

    图 3  气泡初始半径破碎概率随转速的变化

    Figure 3.  Variation of bubble fragmentation probability with rotation speed for different initial bubble radii.

    图 4  涡流场中声空化泡的破碎特性 (a) 1500 rad/min, 2000 rad/min转速下不同初始半径气泡破碎示意图; (b) 1000 rad/min, 1100 rad/min转速下不同初始半径气泡破碎示意图; (c) 1500 rad/min, 2000 rad/min转速下不同初始半径气泡破碎温度示意图; (d) 1000 rad/min, 1100 rad/min转速下不同初始半径气泡破碎温度示意图

    Figure 4.  Fragmentation characteristics of cavitation bubbles in a turbulent flow field: (a) Schematic diagram of bubble fragmentation with different initial radii at 1500 rad/min and 2000 rad/min speeds; (b) schematic diagram of bubble fragmentation with different initial radii at speeds of 1000 rad/min and 1100 rad/min; (c) schematic diagram of bubble fragmentation temperature at different initial radii at 1500 rad/min and 2000 rad/min speeds; (d) schematic diagram of bubble fragmentation temperature at different initial radii at speeds of 1000 rad/min and 1100 rad/min.

    图 5  涡流场中声空化对亚甲基蓝降解效果

    Figure 5.  Effect of cavitation in a turbulent flow field on the degradation of methylene blue.

    表 1  不同搅拌转速对应的气泡破碎半径

    Table 1.  Bubble fragmentation radius corresponding to different stirring speeds.

    搅拌转速/
    (rad·min–1)
    破碎
    半径/μm
    搅拌转速/
    (rad·min–1)
    破碎
    半径/μm
    500 251.1 1200 90.6
    600 200.2 1300 85.4
    700 175.1 1400 82.5
    800 159.3 1500 78.0
    900 136.6 1600 71.5
    1000 122.1 1800 62.4
    1100 99.5 2000 55.5
    DownLoad: CSV
    Baidu
  • [1]

    宗星星 2023 现代工业经济和信息化 8 197Google Scholar

    Zong X X 2023 Mod. Ind. Econ. Inf. 8 197Google Scholar

    [2]

    Xu A, Wu Y H, Chen Z, Wu G, Wu Q, Ling F, Huang W E, Hu H Y 2020 Water Cycle 1 80Google Scholar

    [3]

    Khan N, Pu J Y, Pu C S, Xu H X, Gu X Y, Zhang L, Huang F F, Nasir M A, Ullah R 2019 Ultrason. Sonochem. 56 350Google Scholar

    [4]

    Dehghani M H, Karri R R, Koduru J R, Manickam S, Tyagi I, Mubarak N M, Suhasf 2023 Ultrason. Sonochem. 94 106302Google Scholar

    [5]

    Flores E M M, Cravotto G, Bizzi C A, Santos D, Iop G D 2021 Ultrason. Sonochem. 72 105455Google Scholar

    [6]

    Nanzai B, Mochizuki A, Wakikawa Y, Masuda Y, Oshio T, Yagishita K 2023 Ultrason. Sonochem. 95 106357Google Scholar

    [7]

    Pandit A V, Sarvothaman V P, Ranade V V 2021 Ultrason. Sonochem. 77 105677Google Scholar

    [8]

    Ji H F, Xu Y F, Shi H F, Yang X D 2024 Appl. Surf. Sci. 652 0169Google Scholar

    [9]

    Pokhrel N, Vabbina P K, Pala N 2016 Ultrason. Sonochem. 29 104Google Scholar

    [10]

    Tian S, Li B, Dai Y, Wang Z L 2023 Mater. Today. 68 254Google Scholar

    [11]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci. 29 295Google Scholar

    [12]

    王双维, 冯若, 史群 1992 自然科学进展 3 267

    Wang S W, Feng R, Shi Q 1992 Prog. Nat. Sci. 3 267

    [13]

    Zhang Z B, Gao T, Liu X Y, Li D W, Zhao J, Lei Y, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [14]

    Moholkar V S 2009 Chem. Eng. Sci. 64 5255Google Scholar

    [15]

    Ferkous H, Hamdaoui O, Pétrier C 2023 Ultrason. Sonochem. 99 106556Google Scholar

    [16]

    Wong C Y, Raymond J L, Usadi L N, Zong Z, Walton S C, Sedgwick A C, Kwan J 2023 Ultrason. Sonochem. 99 106559Google Scholar

    [17]

    Maghami S, Johansson Ö 2024 Ultrason. Sonochem. 103 106804Google Scholar

    [18]

    Zhang X G, Hao C C, Ma C, Shen Z Z, Guo J Z, Sun R G 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [19]

    Madeleine J B, Zhang D K 2014 Ultrason. Sonochem. 21 485Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Liu J H, Shen Z Z, Lin S Y 2021 Phys. Rev. E 30 344Google Scholar

    [22]

    魏鑫鑫 2022 硕士学位论文 (西安: 陕西师范大学)

    Wei X X 2022 M. S. Thesis (Xi’an: Shaanxi Normal University

    [23]

    王英瑞 2022 硕士学位论文 (西安: 陕西师范大学)

    Wang Y R 2018 M. S. Thesis (Xi’an: Shaanxi Normal University

    [24]

    Choi J K, Chahine G 2003 Comput. Mech. 32 281Google Scholar

    [25]

    陈云良, 伍超, 叶茂, 李静 2005 水利学报 36 1269Google Scholar

    Chen Y L, Wu C, Ye M, Li J 2005 J. Hydraul. Eng. 36 1269Google Scholar

    [26]

    Mih W C 2010 J. Hydraul. Res. 27 417

    [27]

    Hasan B O 2017 Chin. J. Chem. Eng. 25 698Google Scholar

    [28]

    Coolaloglou C, Tavlarides L 1977 Chem. Eng. Sci 32 1289Google Scholar

    [29]

    Hasan B O, Hamad M F, Majdi H S, Hathal M M 2021 Eur. J. Mech. B/Fluids 85 430Google Scholar

    [30]

    陈志希, 谢明辉, 周国忠, 虞培清, 王抚华 2010 化学工程 38 38

    Chen Z X, Xie M H, Zhou G Z, Yu P Q, Wang F H 2010 Chem. Eng. J. 38 38

    [31]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [32]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309.Google Scholar

    [33]

    刘金河, 沈壮志, 林书玉 2021 70 224301Google Scholar

    Liu J H, Shen Z Z, Lin S Y 2021 Acta Phys. Sin. 70 224301Google Scholar

    [34]

    Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M 2016 Ultrason. Sonochem. 29 568Google Scholar

    [35]

    Song K, Liu Y J, Ahmad U, Ma H L, Wang H X 2024 Chemosphere 350 141024Google Scholar

    [36]

    Lee D Y, Kang J, Son Y G 2023 Ultrason. Sonochem. 101 1350Google Scholar

  • [1] Liu Rui, Huang Chen-Yang, Wu Yao-Rong, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Structural stability analysis of spherical bubble clusters in acoustic cavitation fields. Acta Physica Sinica, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] Jing Chen-Xuan, Shi Sheng-Guo, Yang De-Sen, Zhang Jiang-Yi, Li Song. Mechanism and characteristics of sound scattering modulation by underwater low frequency oscillating vortex flow field. Acta Physica Sinica, 2023, 72(1): 014302. doi: 10.7498/aps.72.20221748
    [3] Huang Chen-Yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Analysis of suppressive effect of large bubbles on oscillation of cavitation bubble in cavitation field. Acta Physica Sinica, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [4] Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [5] Zheng Ya-Xin, Naranmandula. Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [6] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [7] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [8] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [9] Chen Shi, Zhang Di, Wang Cheng-Hui, Zhang Yin-Hong. Restraining effect of resonant propagation of acousticwaves in liquids with mixed bubbles. Acta Physica Sinica, 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [10] Guo Ce, Zhu Xi-Jing, Wang Jian-Qing, Ye Lin-Zheng. Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field. Acta Physica Sinica, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [11] Wang Cheng-Hui, Mo Run-Yang, Hu Jing. Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound. Acta Physica Sinica, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [12] Shen Zhuang-Zhi. Dynamical behaviors of cavitation bubble under acoustic standing wave field. Acta Physica Sinica, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [13] Miao Bo-Ya, An Yu. Cavitation of two kinds of bubble mixtures. Acta Physica Sinica, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [14] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [15] Ye Xi, Yao Xiong-Liang, Zhang A-Man, Pang Fu-Zhen. The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid. Acta Physica Sinica, 2013, 62(11): 114702. doi: 10.7498/aps.62.114702
    [16] Lu Yi-Gang, Wu Xiong-Hui. Computational analysis of double-bubble ultrasonic cavitation. Acta Physica Sinica, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [17] Shen Zhuang-Zhi, Lin Shu-Yu. Chaotic characteristics of gas bubble motion in acoustic field. Acta Physica Sinica, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [18] Cao Bing-Hua, Yang Xue-Feng, Fan Meng-Bao. Analytical time-domain model of transient eddy current field in pulsed eddy current testing. Acta Physica Sinica, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [19] Chen Qian, Zou Xin-Ye, Cheng Jian-Chun. Investigation of bubble dynamics in ultrasonic sonoporation. Acta Physica Sinica, 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [20] Liu Hai-Jun, An Yu. Pressure distribution outside a single cavitation bubble. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
Metrics
  • Abstract views:  527
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2024
  • Accepted Date:  23 December 2024
  • Available Online:  26 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map