Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of ambient noise on quantum speed limit time and quantum discord dynamics of a double “gravitational cat state” system

DAI Youcheng HAN Wei ZHANG Yingjie

Citation:

Effects of ambient noise on quantum speed limit time and quantum discord dynamics of a double “gravitational cat state” system

DAI Youcheng, HAN Wei, ZHANG Yingjie
cstr: 32037.14.aps.74.20241514
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The exploration of the quantum nature of gravity has always been the focus of academic research. In this work, we consider a double “gravitational cat state” quantum system consisting of a pair of massive particles coupled with gravitational interaction confined in their respective double potential wells. Specifically, we model the double “gravitational cat state” system as a two-qubit system by assuming that the system is initially in the two-qubit Bell state, and investigate the effects of stable classical field and decayed field noise on the quantum speed limit time (QSLT) and trace distance discord (TDD) dynamics of the double “gravitational cat state”. The results show that the QSLT can be controlled by changing the parameters of the system and the environment, and the quantum state dynamic evolution of the system with massive particles can be accelerated. The quantum state evolution can be accelerated by increasing the gravitational coupling intensity between the two massive particles. The decay rate of the decaying field can also regulate the QSLT of the system to a certain extent, so as to accelerate the quantum state evolution. Under the influence of decaying field noise, it is worth noting that the intensity of gravitational coupling affects the frequency of quantum discord oscillations in this two-particle system. The QSLT shows an oscillating trend with time: rapidly increasing to a certain value in a short period of time, then beginning to decline, and then oscillating until it reaches a stable value. That is to say, the evolution of quantum states goes through an oscillatory cycle of first deceleration and then acceleration until the evolution rate becomes stable after a certain period of time. At the same time, there are similar oscillations in the dynamics of quantum discord. Moreover, by comparing these two, it is found that the QSLT decreases in the process of increasing the quantum discord in the system. When the discord oscillation has regularity, the QSLT tends to a certain value, and the quantum discord of the double “gravitational cat state” system has a certain relationship with the QSLT. In other words, the quantum discord will affect the rate of quantum state evolution to some extent, and the increase of quantum discord between systems will be more conducive to the evolution of quantum states.
      Corresponding author: ZHANG Yingjie, yingjiezhang@qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274257, 12204348) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA086).
    [1]

    Marletto C, Vedral V 2017 NPJ Quantum Inf. 3 41Google Scholar

    [2]

    Rovelli C 2021 Universe 7 439Google Scholar

    [3]

    Bose S, Mazumdar A, Schut M, Toroš M 2022 Phys. Rev. D 105 106028Google Scholar

    [4]

    Carlesso M, Bassi A, Paternostro M, Ulbricht H 2019 New J. Phys. 21 093052Google Scholar

    [5]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [6]

    Belenchia A, Wald R M, Giacomini F, Castro-Ruiz E, Časlav B, Aspelmeyer M 2018 Phys. Rev. D 98 126009Google Scholar

    [7]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [8]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [9]

    Carney D, Stamp P C E, Taylor J M 2019 Classical Quantum Gravity 36 034001Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Anastopoulos C, Hu B L 2020 Classical Quantum Gravity 37 235012Google Scholar

    [13]

    Dahbi Z, Rahman A U, Mansour M 2023 Physica A 609 128333Google Scholar

    [14]

    Rojas M, Lobo I P 2023 Universe 9 71Google Scholar

    [15]

    Hadipour M, Haseli S 2024 Europhys. Lett. 147 29003Google Scholar

    [16]

    Haddadi S, Ghominejad M, Czerwinski A 2024 Eur. Phys. J. C 84 670Google Scholar

    [17]

    Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303Google Scholar

    [18]

    Maleki Y, Scully M O, Zheltikov A M 2021 Phys. Rev. A 104 053712Google Scholar

    [19]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [20]

    Cruz C, Anka M F, Reis M S, Bachelard R, Santos A C 2022 Quantum Sci. Technol. 7 025020Google Scholar

    [21]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [22]

    Mansour M, Dahbi Z 2020 Int. J. Theor. Phys. 59 3876Google Scholar

    [23]

    Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115Google Scholar

    [24]

    Paula F M, Oliveira T R D, Sarandy M S 2013 Phys. Rev. A 87 064101Google Scholar

    [25]

    Ciccarello F, Tufarelli T, Giovannetti V 2014 New J. Phys. 16 013038Google Scholar

    [26]

    Rahman A U, Liu A X, Haddadi S, Qiao C F 2023 arXiv: 2308.12536 [quant-ph]

    [27]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [28]

    Taddei M M, Escher B M, Davidovich L, Matos Filho R L D 2013 Phys. Rev. Lett. 110 050402Google Scholar

    [29]

    Deffner S, Lutz E 2013 Phys. Rev. Lett. 111 010402Google Scholar

    [30]

    Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2014 Sci. Rep. 4 4890Google Scholar

    [31]

    Henderson L, Vedral V 2001 J. Phys. A Math. Gen. 34 6899Google Scholar

    [32]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [33]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501Google Scholar

    [34]

    Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502Google Scholar

    [35]

    Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

  • 图 1  双“引力猫态”的物理模型, 两个双势阱位于不同的轴上, 两平行轴之间的距离为$ d{=}\sqrt {{{d'}^2} - {L^2}} $

    Figure 1.  Physical model of the double “gravitational cat state”, where two double wells are located on different axes and the distance between the two parallel axes is $ d{=}\sqrt {{{d'}^2} - {L^2}} $.

    图 2  稳定经典场噪声影响下双“引力猫态” QSLT与实际演化时间的比值$ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $随引力耦合强度$ \gamma $和经典场噪声参数$ \delta $的变化. 这里双“引力猫态”与场之间的耦合$ \lambda = 1 $, 实际演化时间$ {\tau _{\mathrm{D}}} = 1 $

    Figure 2.  Ratio $ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $ of the quantum speed limit time to the actual evolution time for the double “gravitational cat state” under the influence of stable classical field noise as a function of the gravitational coupling $ \gamma $ and the parameters of the classical field noise $ \delta $. Here the coupling between the double “gravitational cat state” and the field is $ \lambda = 1 $, the evolutional time is $ {\tau _{\mathrm{D}}} = 1 $.

    图 3  经典噪声场存在衰减时, 双“引力猫态” QSLT与实际演化时间的比值$ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $随引力耦合强度$ \gamma $和场衰减率$ \chi $的变化. 这里$ \delta = 1 $, 双“引力猫态”与场之间的耦合$ \lambda = 1 $, 实际演化时间$ {\tau _{\mathrm{D}}} = 1 $

    Figure 3.  Ratio $ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $ of the quantum speed limit time to the actual evolution time under the influence of classical decaying field for the double “gravitational cat state” as a function of the gravitational coupling $ \gamma $ and the decay rates $ \chi $. Here the coupling between the double “gravitational cat state” and the field is $ \lambda = 1 $, for $ \delta = 1 $, and the evolutional time is $ {\tau _{\mathrm{D}}} = 1 $.

    图 4  噪声场存在衰减时, 双“引力猫态”QSLT与实际演化时间的比值$ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $随场衰减率$ \chi $和经典场参数$ \delta $的变化. 这里双“引力猫态”与场之间的耦合$ \lambda = 1 $, $ \gamma = 0.1 $, 实际演化时间$ {\tau _{\mathrm{D}}} = 1 $

    Figure 4.  Ratio $ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $ of the quantum speed limit time to the actual evolution time under the influence of classical decaying field for the double “gravitational cat state” as a function of the parameters of the classical field noise $ \delta $ and the decay rates $ \chi $. Here the coupling between the double “gravitational cat state” and the field is $ \lambda = 1 $ for $ \gamma = 0.1 $, the evolutional time is $ {\tau _{\mathrm{D}}} = 1 $.

    图 5  稳定经典场噪声影响下双 “引力猫态” TDD在不同的稳定经典场参数$ \delta $下随时间$ t $的变化 (a)引力耦合强度较弱时$ \gamma = 0.1 $; (b)引力耦合强度较强时$ \gamma = 10 $

    Figure 5.  Trace distance discord under the influence of stable classical field noise for the double “gravitational cat state” as a function of the parameters of the classical field noise $ \delta $ and evolution time $ t $: (a) The coupling between the double “gravitational cat state” is weak, for $ \gamma = 0.1 $; (b) the coupling between the double “gravitational cat state” is strong, for $ \gamma = 10 $.

    图 6  在强耦合和弱耦合时, 双 “引力猫态”TDD随时间的变化, 此时$ \delta = 1 $ (a)经典场噪声影响下; (b)噪声场存在衰减, $ \chi = 1 $

    Figure 6.  Trace distance discord under different coupling strength for the double “gravitational cat state” as a function of the evolution time $ t $, and $ \delta = 1 $: (a) Classical field noise; (b) general local decaying field, $ \chi = 1 $.

    图 7  噪声场存在衰减时, 双“引力猫态” TDD和QSLT与实际演化时间的比值$ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $作为初始时间的函数. 驱动时间$ {\tau _{\mathrm{D}}} = 1 $, $ \gamma = 1 $ (a) $ \chi = 1 $; (b) $ \chi = 2 $

    Figure 7.  Trace distance discord and the ratio $ {{{\tau _{{\mathrm{QSL}}}}} {/ } {{\tau _{\mathrm{D}}}}} $ of the quantum speed limit time to the actual evolution time under the influence of classical decaying field for the double “gravitational cat state” as a function of the initial evolution time $ t $, for $ {\tau _{\mathrm{D}}} = 1 $, $ \gamma = 1 $: (a) $ \chi = 1 $; (b) $ \chi = 2 $.

    Baidu
  • [1]

    Marletto C, Vedral V 2017 NPJ Quantum Inf. 3 41Google Scholar

    [2]

    Rovelli C 2021 Universe 7 439Google Scholar

    [3]

    Bose S, Mazumdar A, Schut M, Toroš M 2022 Phys. Rev. D 105 106028Google Scholar

    [4]

    Carlesso M, Bassi A, Paternostro M, Ulbricht H 2019 New J. Phys. 21 093052Google Scholar

    [5]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017Google Scholar

    [6]

    Belenchia A, Wald R M, Giacomini F, Castro-Ruiz E, Časlav B, Aspelmeyer M 2018 Phys. Rev. D 98 126009Google Scholar

    [7]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401Google Scholar

    [8]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402Google Scholar

    [9]

    Carney D, Stamp P C E, Taylor J M 2019 Classical Quantum Gravity 36 034001Google Scholar

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124 221102Google Scholar

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101Google Scholar

    [12]

    Anastopoulos C, Hu B L 2020 Classical Quantum Gravity 37 235012Google Scholar

    [13]

    Dahbi Z, Rahman A U, Mansour M 2023 Physica A 609 128333Google Scholar

    [14]

    Rojas M, Lobo I P 2023 Universe 9 71Google Scholar

    [15]

    Hadipour M, Haseli S 2024 Europhys. Lett. 147 29003Google Scholar

    [16]

    Haddadi S, Ghominejad M, Czerwinski A 2024 Eur. Phys. J. C 84 670Google Scholar

    [17]

    Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303Google Scholar

    [18]

    Maleki Y, Scully M O, Zheltikov A M 2021 Phys. Rev. A 104 053712Google Scholar

    [19]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [20]

    Cruz C, Anka M F, Reis M S, Bachelard R, Santos A C 2022 Quantum Sci. Technol. 7 025020Google Scholar

    [21]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [22]

    Mansour M, Dahbi Z 2020 Int. J. Theor. Phys. 59 3876Google Scholar

    [23]

    Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115Google Scholar

    [24]

    Paula F M, Oliveira T R D, Sarandy M S 2013 Phys. Rev. A 87 064101Google Scholar

    [25]

    Ciccarello F, Tufarelli T, Giovannetti V 2014 New J. Phys. 16 013038Google Scholar

    [26]

    Rahman A U, Liu A X, Haddadi S, Qiao C F 2023 arXiv: 2308.12536 [quant-ph]

    [27]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [28]

    Taddei M M, Escher B M, Davidovich L, Matos Filho R L D 2013 Phys. Rev. Lett. 110 050402Google Scholar

    [29]

    Deffner S, Lutz E 2013 Phys. Rev. Lett. 111 010402Google Scholar

    [30]

    Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2014 Sci. Rep. 4 4890Google Scholar

    [31]

    Henderson L, Vedral V 2001 J. Phys. A Math. Gen. 34 6899Google Scholar

    [32]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [33]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501Google Scholar

    [34]

    Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502Google Scholar

    [35]

    Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

  • [1] Chen Ruo-Fan. Time-evolving matrix product operator method and its applications in open quantum system. Acta Physica Sinica, 2023, 72(12): 120201. doi: 10.7498/aps.72.20222267
    [2] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [3] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [4] Zhang Jin-Feng, Arapat Ablimit, Yang Fan, Akbar Hamutjan, Tang Shi-Sheng, Ahmad Abliz. Effects of Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction on quantum discord of non-markovian dynamics under different magnetic fields. Acta Physica Sinica, 2021, 70(22): 223401. doi: 10.7498/aps.70.20211277
    [5] Cheng Jing, Shan Chuan-Jia, Liu Ji-Bing, Huang Yan-Xia, Liu Tang-Kun. Geometric quantum discord in Tavis-Cummings model. Acta Physica Sinica, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [6] Lin Dun-Qing, Zhu Ze-Qun, Wang Zu-Jian, Xu Xue-Xiang. Quantum statistical properties of phase-type three-headed Schrodinger cat state. Acta Physica Sinica, 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [7] Gou Li-Dan, Wang Xiao-Qian. Properties of quantum correlations in the Yang-Baxter spin-1/2 chain mode. Acta Physica Sinica, 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [8] Wang Dan-Qin, He Chuang-Chuang. Investigation of quantum discord for two-spin system. Acta Physica Sinica, 2015, 64(4): 043403. doi: 10.7498/aps.64.043403
    [9] Li Rui-Qi, Lu Dao-Ming. Quantum discord in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [10] Lu Dao-Ming, Qiu Chang-Dong. Quantum discord in the system of two atoms trapped in weak coherent state cavities connected by an optical fiber. Acta Physica Sinica, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [11] Xie Mei-Qiu, Guo Bin. Thermal quantum discord in Heisenberg XXZ model under different magnetic field conditions. Acta Physica Sinica, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [12] Yang Yang, Wang An-Min. Quantum correlation for a central two-qubit system coupled to Ising chain. Acta Physica Sinica, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [13] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [14] Li Hong, Zhang Yong-Qiang, Cheng Jie, Wang Lu-Xia, Liu De-Sheng. Laser pulse control of ultrafast heterogeneous electron transfer——The multiple vibrational mode three electronic state system. Acta Physica Sinica, 2007, 56(6): 3589-3595. doi: 10.7498/aps.56.3589
    [15] Shao Chang-Gui, Xiao Jun-Hua, Shao Liang, Shao Dan, Chen Yi-Han, Pan Gui-Jun. . Acta Physica Sinica, 2002, 51(7): 1467-1474. doi: 10.7498/aps.51.1467
    [16] ZHANG FEI-ZHOU, WANG JIAO, GU YAN. THE STATISTICAL NON-ERGODICITY OF THE EIGENSTATES OF THE QUANTUM CHAOTIC SYSTEMS AND ITS SEMI-CLASSICAL LIMIT. Acta Physica Sinica, 1999, 48(12): 2169-2179. doi: 10.7498/aps.48.2169
    [17] ZHANG WEN-ZHONG, WANG SHUN-JIN. AN ALGEBRAIC DYNAMICS APPROACH TO THE SOLUTION OF THE SU(3)LINEAR NONAUTONOMOUS QUANTUM SYSTEM. Acta Physica Sinica, 1997, 46(2): 209-226. doi: 10.7498/aps.46.209
    [18] Zuo Wei, Wang Shun-Jin. . Acta Physica Sinica, 1995, 44(8): 1177-1183. doi: 10.7498/aps.44.1177
    [19] Zuo Wei, Wang Shun-Jin, A.Weiguny, Li Fu-Li. . Acta Physica Sinica, 1995, 44(8): 1184-1191. doi: 10.7498/aps.44.1184
    [20] YAN MU-LIN, GUO HAN-YING. THE QUANTUM GRAVITY WITH TORSION AND GHOST-FREE DE SITTER GRAVITY (Ⅰ)——GRAVITATIONAL FIELD WITH HOESION UNDER LINEAR COVARIANT GAUGE CONDITION. Acta Physica Sinica, 1984, 33(10): 1377-1385. doi: 10.7498/aps.33.1377
Metrics
  • Abstract views:  530
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2024
  • Accepted Date:  16 December 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map