-
This paper reports low-energy electron scattering with C4- anions with the ab initio R-matrix method in the single state close-coupling (CC) model and the fixed-nuclei approximation. We predicts the elastic integral scattering cross sections (ICS) of the four conformers for C4- ions in the energy range of 0< E ≤12eV and discusses effect of configuration changes on the position and width of the resonances. Additionally, we compare and analyze the theoretical results and experimental data. The results indicate that the experimentally observed resonant peak at 8.8 eV is mainly from the $\Sigma_u^{+}$ and $\Sigma_u^{-}$ resonances of the conformer A and the A2 resonance of the conformer C. The scattering cross-section reveals that the conformer A has five resonant states, and the conformer B has three resonances, while C and D each have four resonances. Finally, we used the Boltzmann distribution to calculate the population of different conformers at different temperatures, and simulated the low-energy electron elastic integrated scattering cross-section at room temperature, which is in good agreement with available experimental results. We also found a shape resonance at 3.3 eV with a width of 0.20 eV in our total cross sections, which is not detected in the available experimental results. This provides a new chance for the measurement.
-
Keywords:
- Electron scattering /
- Conformers of C4- ions /
- R-matrix method /
- Resonance /
- Cross Section
-
[1] Douglas A E 1977Nature 269 130
[2] Gerhardt P, Loffler S, Homann K H, 1987Chem. Phys. Lett. 137 306
[3] Bernath P F, Hinkle K H, Keady J J, 1989Symp., Int., Combust 244 562
[4] Tulej M, Kirkwood D A, Pachkov M, Maier J P 1998Astrophys. J 506 69
[5] Helden G V, Hsu M T, Kemper P R, Bowers M T 1991J. Chem. Phys 95 3835
[6] Helden G V, Kemper P R, Gotts N G, Bowers M T 1993science 259 1300
[7] Helden G V, Hsu M T, Gotts N G, Bowers M T 1993Chem. Phys. Lett 97 8182
[8] Gotts N G, Helden G V, Bowers M T 1995Int. J. Mass Spectrom. Ion Processes 149-150 217
[9] Giuffreda M G, Deleuze M S, François J -P 2002J. Chem. Phys 1068569
[10] Adamowicz L, 1991Chem. Phys 156 387
[11] Schmatz S, Botschwina P 1995Int. J. Mass Spectrom. Ion Processes 149 621
[12] Dreuw A, Cederbaum L S 2001Phys. Rev. A 63 049904
[13] Padellec A L, Rabilloud F, Pegg D, Neau A, Hellberg F, Thomas R D, Schmidt H T, Larsson M, Danared H, Kallberg A, Andersson K, Hanstorp D 2001J. Chem. Phys 115 10671
[14] Fritioff K, Joakim S, Pontus A, Hanstorp D, Hellberg F, Thomas R, Larsson M, Österdahl F, Collins G F, A Le Padellec, Pegg D J, Gibson N D, Danared H, Källberg 2004J. Phys. B: At., Mol. Opt. Phys. 37 2241
[15] Morgan L A, Gillan C J, Tennyson J, Chen X 1997J. Phys. B: At., Mol. Opt. Phys. 30 4087
[16] Morgan, L A, Tennyson J, Gillan C J 1998Comput. Phys. Commun. 114 120
[17] Mašín Z, Benda J, Gorfinkiel J D, Harvey A G, Tennyson J, 2020Comput. Phys. Commun. 249 107092
[18] Tennyson J 2010Phys. Rep 491 29
[19] Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012Eur. Phys J. D 66 58
[20] Watts J D, Gauss J, Stanton J F, Bartlett R J 1992J. Chem. Phys 97 8372
[21] Takeshi Y, Tew D P, Handy N C 2004Chem. Phys. Lett393 51
[22] Tirado-Rives J, Jorgensen W L 2008J. Chem. Theory Comput. 4 297
[23] Andersson M P, Uvdal P 2005J. Phys. Chem. A109 2937
Metrics
- Abstract views: 100
- PDF Downloads: 3
- Cited By: 0