-
With the development of quantum radar technology, the interaction of photons and targets has gradually become a new hotspot. Quantum radar cross section (QRCS) is an important parameter fon describing the visibility of the target illuminated by light quantum. #br#According to the conservation of energy and the finite element method, the expression of QRCS derived by Marco Lanzagorta is extended, which can be applied to QRCS calculations of non-planar convex targets. As the surface elements of the target have different incident and scattering angles, the integral equation can give a higher calculation accuracy and is suitable for bistatic or multistatic situations. #br#The distribution pattern of the target’s atoms is varied. Using the interatomic distance as the only parameter to describe the atomic distribution is inaccurate. In this paper the metal atomic lattice is considered. Simulation of the QRCS that is composed of three kinds of metal atomic lattices (face-centered cubic, body-centered cubic and hexagonal close-packed lattices) with different atomic distributions has been made. The hexagonal close-packed lattice with asymmetrical distribution for different azimuth angles is discussed. Simulation result shows that with different arrangement of atoms, the main lobe of the target QRCS is basically unchanged, while the quantum side-lobes of the target with sparsely arranged atoms are much more significant. This reveals a different characteristic of QRCS, and provides theoretic basis for quantum radar and stealth technique researches.
-
Keywords:
- quantum radar /
- scattering cross-section /
- atom arrangement /
- target detection
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (UK: Cambridge University Press) p2
[2] Matthew J. B, Ram M. Narayanan, Marco Lanzagorta 2014 Radar Sensor Technology XVIII, Baltimore Maryland USA, May 05, 2014 p90770T-1
[3] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[4] Giovannetti V, Lloyd S, Maccone L 2004 Science 360 1330
[5] Lopaeva E D, I. Berchera R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603
[6] Mouradian S L, Wong F N, Shapiro J H 2013 2013 Conference on Laser and Electro-Optics San Jose California, USA, June 9-14, 2013 p148
[7] Subacuática D C, Lanzagorta M 2014 Journal De Ciencia E Ingenieria 6 1
[8] Jiang K, Lee H, Gerry C C, Dowling J P 2013 Journal of Applied Physics 114 193102
[9] Lanzagorta M, Quantum Radar 2011 Synthesis Lectures on Quantum Computing (USA: Morgan & Claypool Publishers) p1-139
[10] Lanzagorta M 2010 SPIE Photonics Europe, Brussels, April 12-16, 2010 p77270
[11] Liu K, Xiao H T, Fan H Q 2014 Chin. Phys. Lett. 31 034202
[12] Liu K, Xiao H T, Fan H Q, Fu Q 2014 Photonics Technology Letters 26 1146
[13] Wang X W 2010 Basic of Metallography (Beijing: China Machine Press) p28 (in Chinese) [王学武 2010 金属学基础 (北京: 机械工业出版社) 第28页]
[14] Ren S Y 1983 Acta Phys. Sin. 32 664 (in Chinese) [任尚元 1983 32 664]
[15] Zhu H L, Huang Z Q 1987 Acta Phys. Sin. 36 1122 (in Chinese) [朱慧珑, 黄祖洽 1987 36 1122]
[16] Shao J L, He A M, Duan S Q, Wang P, Qin C S 2010 Acta Phys. Sin. 59 4888 (in Chinese) [邵建立, 何安民, 段素青, 王裴, 秦承森 2010 59 4888]
-
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (UK: Cambridge University Press) p2
[2] Matthew J. B, Ram M. Narayanan, Marco Lanzagorta 2014 Radar Sensor Technology XVIII, Baltimore Maryland USA, May 05, 2014 p90770T-1
[3] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[4] Giovannetti V, Lloyd S, Maccone L 2004 Science 360 1330
[5] Lopaeva E D, I. Berchera R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603
[6] Mouradian S L, Wong F N, Shapiro J H 2013 2013 Conference on Laser and Electro-Optics San Jose California, USA, June 9-14, 2013 p148
[7] Subacuática D C, Lanzagorta M 2014 Journal De Ciencia E Ingenieria 6 1
[8] Jiang K, Lee H, Gerry C C, Dowling J P 2013 Journal of Applied Physics 114 193102
[9] Lanzagorta M, Quantum Radar 2011 Synthesis Lectures on Quantum Computing (USA: Morgan & Claypool Publishers) p1-139
[10] Lanzagorta M 2010 SPIE Photonics Europe, Brussels, April 12-16, 2010 p77270
[11] Liu K, Xiao H T, Fan H Q 2014 Chin. Phys. Lett. 31 034202
[12] Liu K, Xiao H T, Fan H Q, Fu Q 2014 Photonics Technology Letters 26 1146
[13] Wang X W 2010 Basic of Metallography (Beijing: China Machine Press) p28 (in Chinese) [王学武 2010 金属学基础 (北京: 机械工业出版社) 第28页]
[14] Ren S Y 1983 Acta Phys. Sin. 32 664 (in Chinese) [任尚元 1983 32 664]
[15] Zhu H L, Huang Z Q 1987 Acta Phys. Sin. 36 1122 (in Chinese) [朱慧珑, 黄祖洽 1987 36 1122]
[16] Shao J L, He A M, Duan S Q, Wang P, Qin C S 2010 Acta Phys. Sin. 59 4888 (in Chinese) [邵建立, 何安民, 段素青, 王裴, 秦承森 2010 59 4888]
Catalog
Metrics
- Abstract views: 6869
- PDF Downloads: 214
- Cited By: 0