搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于R矩阵理论的气体分子弹性碰撞截面计算及其与绝缘强度关联分析

张兴义 杨帅 尚述祥 吴少博 王航 肖集雄

引用本文:
Citation:

基于R矩阵理论的气体分子弹性碰撞截面计算及其与绝缘强度关联分析

张兴义, 杨帅, 尚述祥, 吴少博, 王航, 肖集雄

Calculation of Elastic Cross-sections of Gas Molecules and its Correlation with Insulation Strength Based on R-matrix Method

Zhang Xingyi, Yang Shuai, Shang Shuxiang, Wu Shaobo, Wang Hang, Xiao Jixiong
PDF
导出引用
  • 弹性碰撞截面是研究粒子间相互作用的关键参数之一,有助于揭示气体绝缘的微观机理。本文基于R矩阵理论计算了24种气体分子在0~15 eV下的弹性碰撞截面,提取了最低共振态能量、峰值等截面特征参数。对比了SF6、CF2Cl2、i-C3F7CN碰撞截面的计算值与试验值,首次给出了i-C3F7CN在0~1 eV的低能碰撞截面;分析了F取代和碳链长度对截面参数的影响,最终研究了截面特征与绝缘强度间的关联性。结果表明,计算得到的各分子最低shape共振态能量与现有研究数据一致,均方误差为0.181;F取代时,共振态能量逐渐增大、峰值逐渐减小;碳链延长则与之相反。分子最低共振态能量、截面峰值与气体绝缘强度有较强关联,分子的最低共振态能量越低,对应的截面峰值越大,其绝缘强度越高。通过分析分子中低能弹性碰撞截面特征,可定性评估气体绝缘强度。
    The elastic collision cross-section is a key parameter in the study of inter-particle interactions, which helps to reveal the microscopic mechanism of gas insulation. For this reason, the elastic collision cross-sections of 24 gas molecules at 0-15 eV are calculated based on the R-matrix theory, and cross-section characteristic parameters of the lowest resonance state energy and its peak are extracted. Then the calculated and experimental values of SF6, CF2Cl2, and i-C3F7CN cross-sections are compared, and the low-energy cross-section data of i-C3F7CN at 0~1 eV are given for the first time. Furthermore the effects of Cl-substitution and carbon chain length on the cross-section parameters were analysed. Finally the correlation between cross-section characteristic parameters and insulation strength was investigated. The results show that the lowest shape resonance state energy for each molecule is in better agreement with the data from existing studies, with a mean square error of 0.181. F-substitution, the resonance energy gradually increases and the peak value gradually decreases; carbon chain extension is the opposite, the resonance state energy gradually decreases and the peak value gradually increases; The lowest resonance energy and peak value are strongly correlated with the insulation strength. The lower its lowest resonance energy and the larger the corresponding peak value, the higher the molecular insulation strength. Relevant data can theoretically complement existing experimental data. This study provides low energy cross-section properties of a wide range of insulating gas molecules, which can be useful for qualitatively evaluating the insulating properties of gas molecules, and thus for rapid screening of SF6 replacement gases.
  • [1]

    Man L K, DENG Y K, XIAO D M 2017 High Voltage Eng. 43 788 (in Chinese) [满林坤,邓云坤,肖登明 2017 高电压技术 43 788]

    [2]

    Tian S S, Zhang X X, Xiao S, Zhuo R, Wang D B, Deng Z T, Li Y 2018 Proc. CSEE 38 3125 (in Chinese) [田双双,张晓星,肖淞,卓然,王邸博,邓载韬,李祎 2018 中国电机工程学报 38 3215]

    [3]

    Hu S Z, Zhou W J, Zheng Y, Yu J H, Zhang T R, Wang L Z 2019 High Voltage Eng. 45 3562 (in Chinese) [胡世卓,周文俊,郑宇,喻剑辉,张天然,王凌志 2019 高电压技术 45 3562]

    [4]

    Xiong J Y, Zhang B Y, Li X W, Yang T, Xu N 2021 Proc. CSEE 41 759 (in Chinese) [熊嘉宇,张博雅,李兴文,杨韬,徐宁 2021 中国电机工程学报 41 759]

    [5]

    Zheng Y, Zhou W J, Zhu T Y, Ren S B, Yu J H 2023 High Voltage Eng. 49 946 (in Chinese) [郑宇,周文俊,朱太云,任书波,喻剑辉 2023 高电压技术 49 946]

    [6]

    Song J J, Li X A, LÜ Y F, Yuan X Y, Zhang Q G, Su Z X 2020 High Voltage Eng. 46 1372 (in Chinese) [宋佳洁,李晓昂,吕玉芳,袁勰雨,张乔根,苏镇西 2020 高电压技术 46 1372]

    [7]

    Zhang Z, Lin X, Yu W C, Xu J Y, Zhang J, Su Z X 2020 High Voltage Eng. 46 250 (in Chinese) [张震,林莘,余伟成,徐建源,张佳,苏镇西 2020 高电压技术 46 250]

    [8]

    Wang B S, Yu X J, Hou H, Zhou W J, Luo Y B 2020 Trans. Chin. Electr. Soc. 35 21 (in Chinese) [王宝山,余小娟,侯华,周文俊,罗运柏 2020 电工技术学报 35 21]

    [9]

    Zhang N N, Yang S, Liu G P, Wang H, Xiao J X 2022 High Voltage Eng. 48 4323 (in Chinese) [张闹闹,杨帅,刘关平,王航,肖集雄 2022 高电压技术 48 4323]

    [10]

    Liu G P, Yang S, Zhang N N, Wang H, Xiao J X 2022 High Voltage Eng. 48 2208 (in Chinese) [刘关平,杨帅,张闹闹,王航,肖集雄 2022 高电压技术 48 2208]

    [11]

    Zhang X Y, Yang S, Liu G P, Wu R, Wu S B 2023 J. Mol. Model. 29 224

    [12]

    Li X T, Lin S, Xu J Y, Li L W, Chen H L 2017 Trans. Chin. Electr. Soc. 32 42 (in Chinese) [李鑫涛,林莘,徐建源,李璐维,陈会利 2017 电工技术学报 32 42]

    [13]

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 192 (in Chinese) [孙安邦,李晗蔚,许鹏,张冠军 2017 66 192]

    [14]

    Lucchese R R, Gianturco F A. 1996 Int. Rev. Phys. Chem. 15 429

    [15]

    Berrington K A, Eissner W B, Norrington P H 1995 Comput. Phys. Commun. 92 290

    [16]

    Burke P G, Noble C J, Burke V M 2007 Adv. Atom. Mol. Opt. Phy. 54 237

    [17]

    Schneider B I, Rescigno T N 1988 Phys. Rev. A 37 3749

    [18]

    Takatsuka T, McKoy V 1981 Phys. Rev. A 24 2473

    [19]

    Meyer H D 1994 Chem. Phys. Lett. 223 465

    [20]

    Wang K D, Meng J, Liu Y F, Sun J F 2015 J. Phys. B-At. Mol. Opt. 48 155202

    [21]

    Epée E D M, Motapon O, Darby-Lewis D, Tennyson J 2017 J. Phys. B-At. Mol. Opt. 50 115203

    [22]

    Alexandra L, Jimena D G 2019 J. chem. Phys. 150 064307

    [23]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58

    [24]

    Tennyson J 2010 Phys. Rep. 491 29

    [25]

    Wigner E P 1946 Phys. Rev. 70 15

    [26]

    Burke P G, Hibbert A, Robb W D 1971 J. Phys. B-At Mol. Opt. 4 153

    [27]

    Bai J Z, Ban Y, Bian J G, Cai X,Chang J F, Chen H F, Chen H S, Chen J, Chen J, Chen J C, Chen Y B, Chi S P 2003 Phys. Rev. Lett. 91 022001

    [28]

    Fabrikant I I, Eden S, Mason N J 2017 Adv. Atom. Mol. Opt Phy 66 545

    [29]

    Thodika M, Mackouse N, Matsika S 2020 J. Phys. Chem. A 124 9011

    [30]

    Schulz G J 1973 Rev. Mod. Phys. 45 423

    [31]

    CCCBDB http://cccbdb.nist.gov [2024-9-25]

    [32]

    Frisch M J, Trucks G W, Schlegel H B 2017 Gaussian 16 users reference (Wallingford USA: Gaussian) pp33-57

    [33]

    Chen R, Zhang L, Luo X L, Liang G M 2021 Comput. Theor. Chem. 1203 11348

    [34]

    BACH R D, SCHLEGEL H B 2021 J. Phys. Chem. A. 125 5014

    [35]

    Goswami B, Antony B 2014 RSC Adv. 4 30953

    [36]

    Limao-Vieira P, Blanco F, Oller J C, Muñoz A, Pérez J M, Vinodkumar M, García G, Mason N J 2005 Phys. Rev. A 71 2720

    [37]

    Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267

    [38]

    Kennerlya R E, Bonham R A, McMillan M 1979 J. Chem. Phys. 70 2039

    [39]

    Makochekanwa C, Kimura M, Sueoka O 2004 Phys. Rev. A 70 022702

    [40]

    Dababneh M S, Hsieh Y F, Kauppila W E 1988 Phys. Rev. A 38 1207

    [41]

    Wang C L, Bridgette C, Wang Y, Sun H, Tennyson J 2021 J. Phys. B-At. Mol. Opt. 54 025202

    [42]

    Xia H Y, Yang S, Wang H, Xiao J X 2023 High Voltage Eng 49 4563 (in Chinese) [夏涵怡,杨帅,王航,肖集雄 2023 高电压技术 49 4563]

    [43]

    Christophorou L G, Olthoff J K, Wang Y 2009 J. Phys. Chem. Ref. Data 26 1205.

    [44]

    Robert K. Jones 1986 J. Chem. Phys. 84 813

    [45]

    Theresa Underwood-lemons, Dennis C W, John A T 1994 J. Chem. Phys. 100 9117

    [46]

    Zhang J W, Sinha N, Jiang M, Wang H G, Li Y D, Antony B, Liu C L 2022 IEEE T Dielect.El. In. 29 1005

    [47]

    Hitchcock A P, Tronc M, Modelli A 1989 J. ChemInform 20 3068

    [48]

    Devins J 1980 IEEE T. El. In. 15 81

    [49]

    SANCHE L, SCHULZ G J 1973 J. Chem. Phys. 58 479

    [50]

    Berman M, Hernan E, Cederbaum L S 1983 Phys. Rev. A 28 1363

    [51]

    Ehrhardt H, Langhans L, Linder F 1968 Phys. Rev. 173 222

    [52]

    Hien X P, Jeon B, Tuan A D 2013 J. Phys. Soc. Jap. 82 03430

    [53]

    Ishii I, McLaren R, Hitchcock A P 1988 Can. J. Chem. 66 2104

    [54]

    Thynne J C J, Harland P W 1973. Int. J. Mass Spectrom 11 399

    [55]

    Burrow P D, Modelli A, Chiu N S 1982 J. Chem. Phys. 77 2699

    [56]

    Jordan D K, Burrow D P 1987 Chem. Rev. 87 557

    [57]

    Harland P W, Thynne J C J 1957 Int. J. Mass Spectrom 10 11

    [58]

    Fieller E C, Hartley H O, Pearson E S 1957 Biometrika 44 470

  • [1] 李炅远, 孟举, 王克栋. C4-离子的低能电子弹性散射研究:共振态与同分异构.  , doi: 10.7498/aps.73.20241377
    [2] 王晓伟, 郭建友. 复动量格林函数方法对n-α散射研究.  , doi: 10.7498/aps.68.20182197
    [3] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射.  , doi: 10.7498/aps.66.243401
    [4] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿.  , doi: 10.7498/aps.60.074225
    [5] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , doi: 10.7498/aps.60.053202
    [6] 余春日, 江贵生, 张杰. He原子与HI分子碰撞截面的密耦计算.  , doi: 10.7498/aps.58.2376
    [7] 张洪英, 陈德应, 鲁振中, 樊荣伟, 夏元钦. Ba-Sr系统激光感生碰撞能量转移的数值计算.  , doi: 10.7498/aps.57.7600
    [8] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究.  , doi: 10.7498/aps.56.3839
    [9] 姚细林, 王新兵, 赖建军. 微空心阴极放电的Monte Carlo模拟研究.  , doi: 10.7498/aps.52.1450
    [10] 刘家瑞, 雷子明, 杨锋, 潘广炎, 于德洪, 孙湘. 单、双电荷离子与原子碰撞中的激发态和发射截面比较.  , doi: 10.7498/aps.37.1254
    [11] 许伯威. KK和KK共振态.  , doi: 10.7498/aps.22.840
    [12] 武尚賢, 黄五羣, 许伯威. 关于Kπ共振态.  , doi: 10.7498/aps.22.961
    [13] 葛墨林, 段一士. π-π共振态.  , doi: 10.7498/aps.22.724
    [14] 许伯威. 二粒子共振态的质量公式.  , doi: 10.7498/aps.21.1814
    [15] 高崇寿. 关于πω(1220)共振态和K10K±π?(1410)共振态.  , doi: 10.7498/aps.21.465
    [16] 叶芃生. 重子共振态的选择规则.  , doi: 10.7498/aps.21.1924
    [17] 许伯威. K-π共振态.  , doi: 10.7498/aps.21.221
    [18] 葛墨林, 段一士. 关于π-π共振态.  , doi: 10.7498/aps.21.1903
    [19] 高崇寿. 偶同位旋π-π共振态质量的经验公式.  , doi: 10.7498/aps.20.680
    [20] 许伯威, 孔凡梅, 宫学惠. K—K共振态.  , doi: 10.7498/aps.20.1129
计量
  • 文章访问数:  44
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-20

/

返回文章
返回
Baidu
map