-
弹性碰撞截面是研究粒子间相互作用的关键参数之一,有助于揭示气体绝缘的微观机理。本文基于R矩阵理论计算了24种气体分子在0~15 eV下的弹性碰撞截面,提取了最低共振态能量、峰值等截面特征参数。对比了SF6、CF2Cl2、i-C3F7CN碰撞截面的计算值与试验值,首次给出了i-C3F7CN在0~1 eV的低能碰撞截面;分析了F取代和碳链长度对截面参数的影响,最终研究了截面特征与绝缘强度间的关联性。结果表明,计算得到的各分子最低shape共振态能量与现有研究数据一致,均方误差为0.181;F取代时,共振态能量逐渐增大、峰值逐渐减小;碳链延长则与之相反。分子最低共振态能量、截面峰值与气体绝缘强度有较强关联,分子的最低共振态能量越低,对应的截面峰值越大,其绝缘强度越高。通过分析分子中低能弹性碰撞截面特征,可定性评估气体绝缘强度。The elastic collision cross-section is a key parameter in the study of inter-particle interactions, which helps to reveal the microscopic mechanism of gas insulation. For this reason, the elastic collision cross-sections of 24 gas molecules at 0-15 eV are calculated based on the R-matrix theory, and cross-section characteristic parameters of the lowest resonance state energy and its peak are extracted. Then the calculated and experimental values of SF6, CF2Cl2, and i-C3F7CN cross-sections are compared, and the low-energy cross-section data of i-C3F7CN at 0~1 eV are given for the first time. Furthermore the effects of Cl-substitution and carbon chain length on the cross-section parameters were analysed. Finally the correlation between cross-section characteristic parameters and insulation strength was investigated. The results show that the lowest shape resonance state energy for each molecule is in better agreement with the data from existing studies, with a mean square error of 0.181. F-substitution, the resonance energy gradually increases and the peak value gradually decreases; carbon chain extension is the opposite, the resonance state energy gradually decreases and the peak value gradually increases; The lowest resonance energy and peak value are strongly correlated with the insulation strength. The lower its lowest resonance energy and the larger the corresponding peak value, the higher the molecular insulation strength. Relevant data can theoretically complement existing experimental data. This study provides low energy cross-section properties of a wide range of insulating gas molecules, which can be useful for qualitatively evaluating the insulating properties of gas molecules, and thus for rapid screening of SF6 replacement gases.
-
Keywords:
- Insulation strength /
- R-matrix method /
- cross-section /
- Resonances
-
[1] Man L K, DENG Y K, XIAO D M 2017 High Voltage Eng. 43 788 (in Chinese) [满林坤,邓云坤,肖登明 2017 高电压技术 43 788]
[2] Tian S S, Zhang X X, Xiao S, Zhuo R, Wang D B, Deng Z T, Li Y 2018 Proc. CSEE 38 3125 (in Chinese) [田双双,张晓星,肖淞,卓然,王邸博,邓载韬,李祎 2018 中国电机工程学报 38 3215]
[3] Hu S Z, Zhou W J, Zheng Y, Yu J H, Zhang T R, Wang L Z 2019 High Voltage Eng. 45 3562 (in Chinese) [胡世卓,周文俊,郑宇,喻剑辉,张天然,王凌志 2019 高电压技术 45 3562]
[4] Xiong J Y, Zhang B Y, Li X W, Yang T, Xu N 2021 Proc. CSEE 41 759 (in Chinese) [熊嘉宇,张博雅,李兴文,杨韬,徐宁 2021 中国电机工程学报 41 759]
[5] Zheng Y, Zhou W J, Zhu T Y, Ren S B, Yu J H 2023 High Voltage Eng. 49 946 (in Chinese) [郑宇,周文俊,朱太云,任书波,喻剑辉 2023 高电压技术 49 946]
[6] Song J J, Li X A, LÜ Y F, Yuan X Y, Zhang Q G, Su Z X 2020 High Voltage Eng. 46 1372 (in Chinese) [宋佳洁,李晓昂,吕玉芳,袁勰雨,张乔根,苏镇西 2020 高电压技术 46 1372]
[7] Zhang Z, Lin X, Yu W C, Xu J Y, Zhang J, Su Z X 2020 High Voltage Eng. 46 250 (in Chinese) [张震,林莘,余伟成,徐建源,张佳,苏镇西 2020 高电压技术 46 250]
[8] Wang B S, Yu X J, Hou H, Zhou W J, Luo Y B 2020 Trans. Chin. Electr. Soc. 35 21 (in Chinese) [王宝山,余小娟,侯华,周文俊,罗运柏 2020 电工技术学报 35 21]
[9] Zhang N N, Yang S, Liu G P, Wang H, Xiao J X 2022 High Voltage Eng. 48 4323 (in Chinese) [张闹闹,杨帅,刘关平,王航,肖集雄 2022 高电压技术 48 4323]
[10] Liu G P, Yang S, Zhang N N, Wang H, Xiao J X 2022 High Voltage Eng. 48 2208 (in Chinese) [刘关平,杨帅,张闹闹,王航,肖集雄 2022 高电压技术 48 2208]
[11] Zhang X Y, Yang S, Liu G P, Wu R, Wu S B 2023 J. Mol. Model. 29 224
[12] Li X T, Lin S, Xu J Y, Li L W, Chen H L 2017 Trans. Chin. Electr. Soc. 32 42 (in Chinese) [李鑫涛,林莘,徐建源,李璐维,陈会利 2017 电工技术学报 32 42]
[13] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 192 (in Chinese) [孙安邦,李晗蔚,许鹏,张冠军 2017 66 192]
[14] Lucchese R R, Gianturco F A. 1996 Int. Rev. Phys. Chem. 15 429
[15] Berrington K A, Eissner W B, Norrington P H 1995 Comput. Phys. Commun. 92 290
[16] Burke P G, Noble C J, Burke V M 2007 Adv. Atom. Mol. Opt. Phy. 54 237
[17] Schneider B I, Rescigno T N 1988 Phys. Rev. A 37 3749
[18] Takatsuka T, McKoy V 1981 Phys. Rev. A 24 2473
[19] Meyer H D 1994 Chem. Phys. Lett. 223 465
[20] Wang K D, Meng J, Liu Y F, Sun J F 2015 J. Phys. B-At. Mol. Opt. 48 155202
[21] Epée E D M, Motapon O, Darby-Lewis D, Tennyson J 2017 J. Phys. B-At. Mol. Opt. 50 115203
[22] Alexandra L, Jimena D G 2019 J. chem. Phys. 150 064307
[23] Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58
[24] Tennyson J 2010 Phys. Rep. 491 29
[25] Wigner E P 1946 Phys. Rev. 70 15
[26] Burke P G, Hibbert A, Robb W D 1971 J. Phys. B-At Mol. Opt. 4 153
[27] Bai J Z, Ban Y, Bian J G, Cai X,Chang J F, Chen H F, Chen H S, Chen J, Chen J, Chen J C, Chen Y B, Chi S P 2003 Phys. Rev. Lett. 91 022001
[28] Fabrikant I I, Eden S, Mason N J 2017 Adv. Atom. Mol. Opt Phy 66 545
[29] Thodika M, Mackouse N, Matsika S 2020 J. Phys. Chem. A 124 9011
[30] Schulz G J 1973 Rev. Mod. Phys. 45 423
[31] CCCBDB http://cccbdb.nist.gov [2024-9-25]
[32] Frisch M J, Trucks G W, Schlegel H B 2017 Gaussian 16 users reference (Wallingford USA: Gaussian) pp33-57
[33] Chen R, Zhang L, Luo X L, Liang G M 2021 Comput. Theor. Chem. 1203 11348
[34] BACH R D, SCHLEGEL H B 2021 J. Phys. Chem. A. 125 5014
[35] Goswami B, Antony B 2014 RSC Adv. 4 30953
[36] Limao-Vieira P, Blanco F, Oller J C, Muñoz A, Pérez J M, Vinodkumar M, García G, Mason N J 2005 Phys. Rev. A 71 2720
[37] Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267
[38] Kennerlya R E, Bonham R A, McMillan M 1979 J. Chem. Phys. 70 2039
[39] Makochekanwa C, Kimura M, Sueoka O 2004 Phys. Rev. A 70 022702
[40] Dababneh M S, Hsieh Y F, Kauppila W E 1988 Phys. Rev. A 38 1207
[41] Wang C L, Bridgette C, Wang Y, Sun H, Tennyson J 2021 J. Phys. B-At. Mol. Opt. 54 025202
[42] Xia H Y, Yang S, Wang H, Xiao J X 2023 High Voltage Eng 49 4563 (in Chinese) [夏涵怡,杨帅,王航,肖集雄 2023 高电压技术 49 4563]
[43] Christophorou L G, Olthoff J K, Wang Y 2009 J. Phys. Chem. Ref. Data 26 1205.
[44] Robert K. Jones 1986 J. Chem. Phys. 84 813
[45] Theresa Underwood-lemons, Dennis C W, John A T 1994 J. Chem. Phys. 100 9117
[46] Zhang J W, Sinha N, Jiang M, Wang H G, Li Y D, Antony B, Liu C L 2022 IEEE T Dielect.El. In. 29 1005
[47] Hitchcock A P, Tronc M, Modelli A 1989 J. ChemInform 20 3068
[48] Devins J 1980 IEEE T. El. In. 15 81
[49] SANCHE L, SCHULZ G J 1973 J. Chem. Phys. 58 479
[50] Berman M, Hernan E, Cederbaum L S 1983 Phys. Rev. A 28 1363
[51] Ehrhardt H, Langhans L, Linder F 1968 Phys. Rev. 173 222
[52] Hien X P, Jeon B, Tuan A D 2013 J. Phys. Soc. Jap. 82 03430
[53] Ishii I, McLaren R, Hitchcock A P 1988 Can. J. Chem. 66 2104
[54] Thynne J C J, Harland P W 1973. Int. J. Mass Spectrom 11 399
[55] Burrow P D, Modelli A, Chiu N S 1982 J. Chem. Phys. 77 2699
[56] Jordan D K, Burrow D P 1987 Chem. Rev. 87 557
[57] Harland P W, Thynne J C J 1957 Int. J. Mass Spectrom 10 11
[58] Fieller E C, Hartley H O, Pearson E S 1957 Biometrika 44 470
计量
- 文章访问数: 44
- PDF下载量: 1
- 被引次数: 0